Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Примеры решений Ранг матрицы Метод Крамера Обратная матрица
Определитель матрицы Умножение матриц Алгебраические дополнения
Скалярное произведение Метод обратной матрицы Матричные уравнения

Алгебраические дополнения

Определение. Если в определителе n-го порядка вычеркнуть i строку и j столбец, то оставшийся определитель (n-1)-го порядка называется минором данного элемента aij и обозначается Mij. Минором некоторого элемента определителя называется определитель, полученный из исходного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.
Главным минором k-го порядка матрицы А называется определитель, составленный из элементов, расположенных на пересечении ее k строк и k столбцов с одинаковыми номерами.
Угловым минором k-го порядка матрицы А называется определитель, составленный из элементов, расположенных на пересечении ее первых k строк и первых k столбцов.

Определение. Алгебраическим дополнением элемента aij определителя D называется его минор, взятый со знаком (-1)i+j.
Алгебраическое дополнение элемента aij обозначается через Aij. Следовательно, Aij = (-1)i+jMij.

Размерность матрицы

Пример. Дан определитель . Найти минор и алгебраическое дополнение элемента a21 (выделен пунктиром).
Решение. Вычеркивая в определителе первую строку и второй столбец, на пересечении которых находится элемент a21, получим . Тогда A21 = (-1)1+2M21 = -14.
Теорема. Определитель равен сумме произведений элементов какой-нибудь строки или столбца на их алгебраические дополнения, т.е.
D=ai01·Ai01+ai02·Ai02+ ... + ai0n·Ai0n  (*)
где i0 – фиксировано.
Выражение (*) называют разложением определителя D по элементам строки с номером i0.
Вычисление определителя n-го порядка сводится к вычислению одного определителя (n-1)-го порядка, для чего в какой–либо строке (или столбце) получают (n-1) нулей, а затем разлагают определитель по этой строке, пользуясь формулой (*).

Пример. Найти алгебраические дополнения для матрицы:

Решение находим с помощью калькулятора. Найдем главный определитель.
∆ = 0.73 ∙(0.72  ∙0.92 -(-0.17 ∙(-0.15  )))-(-0.19  ∙(-0.07  ∙0.92 -(-0.17 ∙(-0.12  ))))+(-0.12 ∙(-0.07  ∙(-0.15 )-0.72  ∙(-0.12  ))) = 0.437197
Транспонированная матрица

Алгебраические дополнения

1,1 = (0.72  ∙0.92 -(-0.15  ∙(-0.17 ))) = 0.6369

1,2 = -(-0.07  ∙0.92 -(-0.12  ∙(-0.17 ))) = 0.0848

1,3 = (-0.07  ∙(-0.15  )-(-0.12  ∙0.72  )) = 0.0969

2,1 = -(-0.19  ∙0.92 -(-0.15  ∙(-0.12 ))) = 0.1928

2,2 = (0.73 ∙0.92 -(-0.12  ∙(-0.12 ))) = 0.6572

2,3 = -(0.73 ∙(-0.15  )-(-0.12  ∙(-0.19  ))) = 0.1323

3,1 = (-0.19  ∙(-0.17 )-0.72  ∙(-0.12 )) = 0.1187

3,2 = -(0.73 ∙(-0.17 )-(-0.07  ∙(-0.12 ))) = 0.1325

3,3 = (0.73 ∙0.72  -(-0.07  ∙(-0.19  ))) = 0.5123
Обратная матрица

Пример 2:xls
Пример 3