Второй замечательный предел и его следствия
Предел последовательности

Число e является иррациональным и приблизительно равно 2.718. Это число принято за основание логарифмов, которые называют натуральными логарифмами и обозначают ln(x) (ln(x)=logex).
Формула (1) выполняется и для функций

Предел (2) называется вторым замечательным пределом. Критерий для его распознавания включает в себя три требования:
1) должна быть неопределенность вида 1∞,
2) 1+бесконечно малая, или короче: 1+б.м.,
3)

Так, среди пределов




Примечание: число "пи" (π) записывается как pi, знак ∞ как infinity
Типовые замены в пределах
cos(π x) ≈ (-1)x
, x → ∞sin(π x) ≈ (-1)x
, x → ∞cos(x) ≈ [-1;1]
, x → ∞sin(x) ≈ [-1;1]
, x → ∞cos2(x) ≈ [0;1]
, x → ∞sin2(x) ≈ [0;1]
, x → ∞
Примеры решений
Пример 1. Используя свойства бесконечно малых и бесконечно больших функций, найти следующие пределы:
.

Пример 2.
.
Пример 3.
.
Пример 4.
.
Пример 5.
.
Пример 6.
.
Единицу можно было бы получить делением многочлена на многочлен: , тогда
.
Следствиями второго замечательного предела являются следующие пределы (эквивалентные функции):
, в частности
.
, если a=e, то
.
.
С их помощью легко решаются многие задачи на раскрытие неопределенностей.





С их помощью легко решаются многие задачи на раскрытие неопределенностей.
Пример 7.
. (Здесь
).
Пример 8. .
Пример 9.
.
Пример 10.
.
Пример 11. .
Пример 12.
.