Примеры решений Производная онлайн Интегралы онлайн Пределы онлайн Точки разрыва функции Правило Лопиталя Первый замечательный предел Второй замечательный предел

Второй замечательный предел и его следствия

Предел последовательности обозначается буквой e: (1)
Число e является иррациональным и приблизительно равно 2.718. Это число принято за основание логарифмов, которые называют натуральными логарифмами и обозначают ln(x) (ln(x)=logex).
Формула (1) выполняется и для функций
(2)
Предел (2) называется вторым замечательным пределом. Критерий для его распознавания включает в себя три требования:
1) должна быть неопределенность вида 1,
2) 1+бесконечно малая, или короче: 1+б.м.,
3) , причем в показателе степени стоит не произвольная бесконечно большая, а величина, обратная той бесконечно малой, которая прибавляется к числу 1.
Так, среди пределов , , , только второй и третий равны e.
lim
x →

Примечание: число "пи" (π) записывается как pi, знак как infinity

Типовые замены в пределах

  1. cos(π x) ≈ (-1)x, x → ∞
  2. sin(π x) ≈ (-1)x, x → ∞
  3. cos(x) ≈ [-1;1], x → ∞
  4. sin(x) ≈ [-1;1], x → ∞
  5. cos2(x) ≈ [0;1], x → ∞
  6. sin2(x) ≈ [0;1], x → ∞

Примеры решений

Пример 1. Используя свойства бесконечно малых и бесконечно больших функций, найти следующие пределы:
.

Пример 2.
.

Пример 3.
.

Пример 4.
.

Пример 5.
.

Пример 6.

.
Единицу можно было бы получить делением многочлена на многочлен: , тогда
.

Следствиями второго замечательного предела являются следующие пределы (эквивалентные функции):
, в частности .
, если a=e, то .
.
С их помощью легко решаются многие задачи на раскрытие неопределенностей.

Пример 7.
. (Здесь ).

Пример 8. .

Пример 9.
.

Пример 10.
.

Пример 11. .

Пример 12.


.

Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Редактор формул онлайн
Удобный редактор формул для Word, Latex и Web.
Редактор формул онлайн
Подробнее