Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Классификация точек разрыва функции

Непрерывность функции: основные понятия и свойства

Определение. Пусть на некотором промежутке определена функция f(x) и x0 – точка этого промежутка. Если , то f(x) называется непрерывной в точке x0.
Из определения следует, что о непрерывности можно говорить лишь по отношению к тем точкам, в которых f(x) определена (при определении предела функции такого условия не ставилось). Для непрерывных функций , то есть операции f и lim перестановочны. Соответственно двум определениям предела функции в точке можно дать два определения непрерывности – «на языке последовательностей» и «на языке неравенств» (на языке ε-δ). Предлагается это сделать самостоятельно.
Для практического использования иногда более удобно определение непрерывности на языке приращений.
Величина Δx=x-x0 называется приращением аргумента, а Δy=f(x)-f(x0) – приращением функции при переходе из точки x0 в точку x.
Определение. Пусть f(x) определена в точке x0. Функция f(x) называется непрерывной в точке x0, если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Δy→0 при Δx→0.

Пример №1. Доказать, что функция y=sinx непрерывна при любом значении x.
Решение. Пусть x0 – произвольная точка. Придавая ей приращение Δx, получим точку x=x0+Δx. Тогда Δy=f(x)-f(x0) = sin(x0+Δx)-sin(x) = . Получаем .

Определение. Функция y=f(x) называется непрерывной в точке x0 справа (слева), если

Функция, непрерывная во внутренней точке, будет одновременно непрерывной справа и слева. Справедливо и обратное утверждение: если функция непрерывна в точке слева и справа, то она будет непрерывной в этой точке. Однако функция может быть непрерывной только с одной стороны. Например, для , , f(1)=1, следовательно, эта функция непрерывна только слева (график этой функции см. выше в пункте 5.7.2).
Определение. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка.
В частности, если промежутком является отрезок [a,b], то на его концах подразумевается односторонняя непрерывность.

Свойства непрерывных функций

1. Все элементарные функции непрерывны в своей области определения.
2. Если f(x) и φ(x), заданные на некотором промежутке, непрерывны в точке x0 этого промежутка, то в этой точке будут также непрерывны функции

3. Если y=f(x) непрерывна в точке x0 из X, а z=φ(y) непрерывна в соответствующей точке y0=f(x0) из Y, то и сложная функция z=φ(f(x)) будет непрерывной в точке x0.

Разрывы функции и их классификация

Признаком непрерывности функции f(x) в точке x0 служит равенство , которое подразумевает наличие трех условий:
1) f(x) определена в точке x0;
2) ;
3) .
Если хотя бы одно из этих требований нарушено, то x0 называют точкой разрыва функции. Другими словами, точкой разрыва называется точка, в которой эта функция не является непрерывной. Из определения точек разрыва следует, что точками разрыва функции являются:
а) точки, принадлежащие области определения функции, в которых f(x) теряет свойство непрерывности,
б) точки, не принадлежащие области определения f(x), которые являются смежными точками двух промежутков области определения функции.
Например, для функции точка x=0 есть точка разрыва, так как функция в этой точке не определена, а функция имеет разрыв в точке x=1, являющейся смежной для двух промежутков (-∞,1) и (1,∞) области определения f(x) и не существует.

Для точек разрыва принята следующая классификация.
1) Если в точке x0 имеются конечные и , но f(x0+0)≠f(x0-0), то x0 называется точкой разрыва первого рода, при этом называют скачком функции.

Пример 2. Рассмотрим функцию
Разрыв функции возможен только в точке x=2 (в остальных точках она непрерывна как всякий многочлен).
Найдем , . Так как односторонние пределы конечны, но не равны друг другу, то в точке x=2 функция имеет разрыв первого рода. Заметим, что , следовательно функция в этой точке непрерывна справа (рис. 2).
2) Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен ∞ или не существует.

Пример 3. Функция y=21/x непрерывна для всех значений x, кроме x=0. Найдем односторонние пределы: , , следовательно x=0 – точка разрыва второго рода (рис. 3).
3) Точка x=x0 называется точкой устранимого разрыва, если f(x0+0)=f(x0-0)≠f(x0).
Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) значение функции в этой точке, положив

, и функция станет непрерывной в точке x0.
Пример 4. Известно, что , причем этот предел не зависит от способа стремления x к нулю. Но функция в точке x=0 не определена. Если доопределим функцию, положив f(0)=1, то она окажется непрерывной в этой точке (в остальных точках она непрерывна как частное непрерывных функций sinx и x).
Пример 5. Исследовать на непрерывность функцию .
Решение. Функции y=x3 и y=2x определены и непрерывны всюду, в том числе и в указанных промежутках. Исследуем точку стыка промежутков x=0:
, , f(0)=0. Получаем, что:
,
откуда следует, что в точке x=0 функция непрерывна.

Определение. Функция, непрерывная на промежутке за исключением конечного числа точек разрыва первого рода или устранимого разрыва, называется кусочно-непрерывной на этом промежутке.

Примеры разрывных функций

Пример 1. Функция определена и непрерывна на (-∞,+∞) за исключением точки x=2. Определим тип разрыва. Поскольку и , то в точке x=2 разрыв второго рода (рис. 6).
Пример 2. Функция определена и непрерывна при всех x, кроме x=0, где знаменатель равен нулю. Найдем односторонние пределы в точке x=0:
.

Односторонние пределы конечны и различны, следовательно, x=0 – точка разрыва первого рода (рис. 7).
Пример 3. Установить, в каких точках и какого рода разрывы имеет функция
Эта функция определена на [-2,2]. Так как x2 и 1/x непрерывны соответственно в промежутках [-2,0] и [0,2], то разрыв может быть только на стыке промежутков, то есть в точке x=0. Поскольку
, то x=0 является точкой разрыва второго рода.

Пример 4. Можно ли устранить разрывы функций:
а) в точке x=2;
б) в точке x=2;
в) в точке x=1?
Решение. О примере а) сразу можно сказать, что разрыв f(x) в точке x=2 устранить невозможно, так как в этой точке бесконечные односторонние пределы (см. пример 1).
б) Функция g(x) хотя имеет конечные односторонние пределы в точке x=2
(,),
но они не совпадают, поэтому разрыв также устранить нельзя.
в) Функция φ(x) в точке разрыва x=1 имеет равные односторонние конечные пределы: . Следовательно, разрыв может быть устранен переопределением функции в точке x=1, если положить f(1)=1 вместо f(1)=2.

Пример №5. Показать, что функция Дирихле

разрывна в каждой точке числовой оси.
Решение. Пусть x0 – любая точка из (-∞,+∞). В любой ее окрестности найдутся как рациональные, так и иррациональные точки. Значит, в любой окрестности x0 функция будет иметь значения, равные 0 и 1. В таком случае не может существовать предела функции в точке x0 ни слева, ни справа, значит функция Дирихле в каждой точке числовой оси имеет разрывы второго рода.

Пример 6. Найти точки разрыва функции

и определить их тип.
Решение. Точками, подозрительными на разрыв, являются точки x1=2, x2=5, x3=3.
В точке x1=2 f(x) имеет разрыв второго рода, так как
Точка x2=5 является точкой непрерывности, так как значение функции в этой точке и в ее окрестности определяется второй строкой, а не первой: .
Исследуем точку x3=3: , , откуда следует, что x=3 – точка разрыва первого рода.

Для самостоятельного решения.
Исследовать функции на непрерывность и определить тип точек разрыва:
1) ; Ответ: x=-1 – точка устранимого разрыва;
2) ; Ответ: Разрыв второго рода в точке x=8;
3) ; Ответ: Разрыв первого рода при x=1;
4)
Ответ: В точке x1=-5 устранимый разрыв, в x2=1 – разрыв второго рода и в точке x3=0 - разрыв первого рода.
5) Как следует выбрать число A, чтобы функция

была бы непрерывной в точке x=0?
Ответ: A=2.
6) Можно ли подобрать число A так, чтобы функция

была бы непрерывной в точке x=2?
Ответ: нет.

Задана функция y=f(x) и два значения аргумента x1 и x2. Требуется: 1) установить, является ли данная функция непрерывной или разрывной из данных значений аргумента; 2) в случае разрыва определить, какого он рода; 3) все рассуждения обосновать.
, x1 = 1, x2 = 3
Решение:
а)
Предел конечен и равен числу. Следовательно, в точке x1 функция непрерывна.

б)

Предел в точке x=3 не существует. Следовательно, в этой точке функция имеет разрыв. Поскольку один из пределов равен бесконечности, то эта точка разрыва второго рода.

в)


Ответ:
Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Курсовые на заказ