Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Найти производную Определитель матрицы Ранг матрицы Умножение матриц Метод Гаусса Точки разрыва функции Найти интеграл Диф уравнения онлайн Метод множителей Лагранжа

Функция Лагранжа

Функция Лагранжа - функция L(X,λ), определенная выражением L(X,λ) = F(X) + ∑λiφi(x), где λi - множители Лагранжа. Функция Лагранжа используется при решении задач на условный экстремум.

Назначение сервиса. Онлайн-калькулятор используется для нахождения экстремума функции через множители Лагранжа в онлайн режиме (см. пример и пример решения графическим способом). При этом решаются следующие задачи:

  1. составляется функция Лагранжа L(X) в виде линейной комбинации функции F(X) и ограничений gi(x);
  2. находятся частные производные функции Лагранжа, ∂L/∂xi, ∂L/∂λi;
  3. составляется система из (n + m) уравнений, ∂L/∂xi = 0.
  4. определяются переменные xi и множители Лагранжа λi.
Для онлайн решения задачи на экстремум необходимо ввести
количество ограничений, gi(x)
Также формируется шаблон решения в MS Excel.

Метод множителей Лагранжа применяется как в линейном программировании, так и в нелинейном. В экономике этот метод используется в задаче потребительского выбора.


Правило множителей Лагранжа

Если x*=(x1,..., xn) - решение задачи на условный экстремум, то существует хотя бы одна ненулевая система множителей Лагранжа λ*1,...,λm) такая, что точка (x*) является точкой стационарности функции Лагранжа по переменным xj и λi, рассматриваемым, как независимые переменные.
Метод множителей Лагранжа заключается в сведении этих задач к задачам на безусловный экстремум вспомогательной функции — функции Лагранжа.

Пример 1. Методом множителей Лагранжа решить следующую задачу оптимизации:
min f(x) = x12 + x22
h1(x) = 2x1 + x2 -2 = 0
Соответствующая задача оптимизации без ограничений записывается в следующем виде:
L(x, λ) = x12 + x22 + λ(2x1 + x2 – 2) → min
Решение:

Для того чтобы проверить, соответствует ли стационарная точка X минимуму, вычислим матрицу Гессе функции L(x, λ), рассматриваемой как функция от x,
,
которая оказывается положительно определенной (2*2 – 0*0 = 4 > 0).
Это означает, что L(x, λ) – выпуклая функция. Следовательно, координаты x* = (-λ, λ/2) определяют точку глобального минимума. Оптимальное значение λ находится путем подстановки значений x1* иx2*в уравнение ограничений 2x1 + x2 -2 = 0,откуда вычисляем значение λ:
2λ + λ/2 = -2, откуда λ = -0.8
Таким образом, минимум достигается в точке x* с координатами x1* = 0.8 и x2* = 0.4. Значение ЦФ:
min f(x) = 0.8
Ответ: x*= [0.8; 0.4]T , f(x*) = 0.8

Пример 2. Исследовать на условный экстремум функцию f(x,y)max = x2 + 8xy+3y2 при данных уравнениях связи.
9x +10y = 29

Требуются авторы студенческих работ!
  • регулярный поток заказов;
  • стабильный доход
Подробнее
Учебно-методический
  • курсы переподготовки и повышения квалификации;
  • вебинары;
  • сертификаты на публикацию методического пособия
Подробнее
Яндекс 360 для бизнеса
  • Бесконечный почтовый ящик;
  • Объем облачного хранилища от 100 Гб;
  • Загрузка больших файлов — от 1 ГБ
  • Поддержка файлов MS Office
  • Трансляции и их планирование в календаре
Подробнее
Курсовые на заказ