Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса
Найти производную Найти интеграл Решение СЛАУ методом Крамера
Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Метод множителей Лагранжа. Пример решения

Пример №1. Имеется два способа производства некоторого продукта. Издержки производства при каждом способе зависят от произведенных x1 и у2 следующим образом: g(x1)= 9x1 + x12, g(x2)=6x2 + x22 . За месяц необходимо произвести 3×50 единиц продукции, распределив ее между двумя способами так, чтобы минимизировать общие издержки.

Решение. Найдем экстремум функции F(X)=9·x1+x12+6·x2+x22, используя сервис функция Лагранжа:
L(X, λ)=F(X)+∑λi·φi(X)
где F(X) - целевая функция вектора X, φi(X) - ограничения в неявном виде (i=1..n)
В качестве целевой функции, подлежащей оптимизации, в этой задаче выступает функция:
F(X) = 9·x1+x12+6·x2+x22
Перепишем ограничение задачи в неявном виде: φi(X)= x1+x2-150=0
Составим вспомогательную функцию Лагранжа: L(X, λ) = 9·x1+x12+6·x2+x22 + λ(x1+x2-150)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·x1+λ+9 = 0
∂L/∂x2 = λ+2·x2+6 = 0
∂F/∂λ = x1+x2 -150= 0
Систему решаем с помощью метода Гаусса или используя формулы Крамера.

Запишем систему в виде:

Для удобства вычислений поменяем строки местами:

Добавим 2-ую строку к 1-ой:

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:

Из 1-ой строки выражаем x3

Из 2-ой строки выражаем x2

Из 3-ой строки выражаем x1

Таким образом, чтобы общие издержки производства были минимальны, необходимо производить x1 = 74.25; x2 = 75.75.

Задание. По плану производства продукции предприятию необходимо изготовить 50 изделий. Эти изделия могут быть изготовлены 2-мя технологическими способами. При производстве x1 - изделий 1-ым способом затраты равны 3x1+x12 (т. руб.), а при изготовлении x2 - изделий 2-ым способом они составят 5x2+x22 (т. руб.). Определить сколько изделий каждым из способов необходимо изготовить, чтобы общие затраты на производство были минимальные.

Решение: составляем целевую функцию и ограничения:
F(X) = 3x1+x12 + 5x2+x22 → min
x1+x2 = 50

Пример №2. В качестве целевой функции, подлежащей оптимизации, выступает функция: F(X) = x1·x2
при условии: 3x1 + x2 = 6.
Перепишем ограничение задачи в неявном виде: φi(X)=3x1 + x2 - 6 = 0
Составим вспомогательную функцию Лагранжа: L(X, λ)=x1·x2+λ(3x1 + x2 - 6)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 3·λ+x2 = 0
∂L/∂x2 = x1+λ = 0
∂F/∂λ = 3·x1 + x2-6 = 0
Решаем данную систему методом Гаусса.
Запишем систему в виде:

Добавим 2-ую строку к 1-ой:

Умножим 2-ую строку на (3). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Добавим 2-ую строку к 1-ой:

Из 1-ой строки выражаем x3

Из 2-ой строки выражаем x2

Из 3-ой строки выражаем x1

Точка экстремума (1;3). Значение функции в точке экстремума F(1;3)=3.

Пример №3. Рассмотрим функцию: F(X)=3·x12+2·x22-3·x1+1
и условия-ограничения: x12 + x22 = 4
L(X, λ)=3·x12+2·x22-3·x1+1 + λ(x12 + x22 - 4)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·x1·(λ+3)-3 = 0
∂L/∂x2 = 2·(λ+2)·x2 = 0
∂F/∂λ = x12+x22-4 = 0
Выражаем из первого уравнения x1:

Из второго уравнения получаем x2 = 0.
Подставляем в третье уравнение:
или
Перепишем в виде: λ+3 =3/4 откуда λ=-9/4.
Подставляя λ в выражение для x1, получаем:

Стационарная точка (2;0). Значение функции в стационарной точке: F(2;0) = 7.

Пример №4. Найдем локальные стационарные точки функции:
F(X) = 3·x1·x2
g(x): 2·x1+x2=3
Перепишем ограничение задачи в неявном виде: 2·x1+x2-3 = 0
Составим вспомогательную функцию Лагранжа:
L = 3·x1·x2 + λ·(2·x1+x2-3)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·λ+3·x2 = 0
∂L/∂x2 = 3·x1+λ = 0
∂F/∂λ = 2·x1+x2-3 = 0
Данную систему решаем методом обратной матрицы:
Запишем матрицу в виде:
Вектор B: BT = (0,0,3)
Главный определить: ∆ = 0·(0·0-1·1)-3·(3·0-1·2)+2·(3·1-0·2) = 12
Транспонированная матрица:
Алгебраические дополнения
; ∆1,1 = (0·0-1·1) = -1
; ∆1,2 = -(3·0-2·1) = 2
; ∆1,3 = (3·1-2·0) = 3
; ∆2,1 = -(3·0-1·2) = 2
; ∆2,2 = (0·0-2·2) = -4
; ∆2,3 = -(0·1-2·3) = 6
; ∆3,1 = (3·1-0·2) = 3
; ∆3,2 = -(0·1-3·2) = 6
; ∆3,3 = (0·0-3·3) = -9
Обратная матрица:
Вектор результатов X: X = A-1·B


x1 = 9 / 12 = 0.75
x2 = 18 / 12 = 1.5
λ = -27 / 12 = -2.25
Таким образом, локальный экстремум (0.75; 1.5). Значение функции в стационарной точке F(0.75; 1.5) = 3.375.

Пример №5. Найдем точку экстремума функции:
F(X) = 2x12+x1x2+x22+2x1-4x2
Перепишем ограничение задачи в неявном виде:
φ1 = x1+x2-2 = 0
Составим вспомогательную функцию Лагранжа:
L = 2x12+x1x2+x22+2x1-4x2 + λ(x1+x2-2)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 4x1+λ+x2+2 = 0
∂L/∂x2 = x1+λ+2x2-4 = 0
∂F/∂λ = x1+x2-2 = 0
Решаем данную систему с помощью формул Крамера.
Запишем систему в виде:

BT = (-2,4,2)
Главный определитель:
∆ = 4 · (2 · 0-1 · 1)-1 · (1 · 0-1 · 1)+1 · (1 · 1-2 · 1) = -4 = -4
Заменим 1-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.
1 = -2 · (2 · 0-1 · 1)-4 · (1 · 0-1 · 1)+2 · (1 · 1-2 · 1) = 4

Заменим 2-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.
2 = 4 · (4 · 0-2 · 1)-1 · (-2 · 0-2 · 1)+1 · (-2 · 1-4 · 1) = -12

Заменим 3-ый столбец матрицы А на вектор результата В.

Найдем определитель полученной матрицы.
3 = 4 · (2 · 2-1 · 4)-1 · (1 · 2-1 · (-2))+1 · (1 · 4-2 · (-2)) = 4

Стационарная точка: F(-1; 3).

Пример №6. Найдем экстремум функции F(X) = x1·x2, используя функцию Лагранжа: L(X, λ)=F(X)+∑λi·φi(X).
Примечание: решение ведем с помощью сервиса Функция Лагранжа онлайн