Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Калькуляторы по этой теме
Собраны наиболее популярные калькуляторы по дисциплине Высшая математика.
Подробнее
Примеры решений Производная онлайн Интегралы онлайн Уравнения Бернулли xydx + (x+1)dy = 0 y'' - 3y' + 2y = 0 (y')2+2yy'' = 0 Диф уравнения онлайн Системы дифф уравнений Метод вариации постоянной

Приближенные методы решения дифференциальных уравнений

Рассмотрим задачу Коши (5.2), (5.6) для дифференциального уравнения первого порядка: найти решение уравнения y'=f(x,y), удовлетворяющее условию y(x0)=y0. Пусть y(x)- решение поставленной задачи Коши. Подставив это решение в уравнение (5.2), получим тождество y'(x) ≡ f(x,y(x)). Интегрируя это тождество по x, получаем

,

или, что тоже самое,

. (5.15)

Таким образом, мы показали, что всякое решение задачи Коши (5.2), (5.6) есть решение интегрального уравнения (5.15). С другой стороны, если y(x)- решение интегрального уравнения (5.15), то дифференцируя (5.15) по x, получаем, что y(x)- решение задачи Коши (5.2), (5.6).

Решение интегрального уравнения (5.15) будем искать с помощью метода последовательных приближений. Положим

y0(x)=y0, . (5.16)

Если оператор

- (5.17)

сжимающий [12], то последовательные приближения (5.16) сходятся к решению интегрального уравнения (5.15), а, следовательно и дифференциального уравнения y' = f(x,y), удовлетворяющего условию y(x0) = y0. Желающие могут познакомиться с доказательством сжимаемости оператора (5.17) в [12].

Пример №1. Найдём с помощью метода последовательных приближений решение уравнения y' = y, удовлетворяющее условию y(0)=1. Подставляя y(0)=1 в (5.16), получаем

y0=1, …,

С другой стороны, решая исходную задачу Коши, имеем y = ex.

Таким образом, нами получено разложение функции ex в ряд Тейлора в нуле (ряд Маклорена).

Перейдём теперь к изложению численного метода Эйлера решения задачи Коши (5.2), (5.6). Разобьём отрезок [a,b], на котором мы ищем решение, на части точками x0 = a<x1<…<xn = b. Положим yi=y(xi), hi = xi+1 - xi, 0≤i≤n. Так как по определению производной то заменяя производную y'(xi) конечной разностью в уравнении (5.2), получаем , или, что то же самое,

yi+1 = yi + h·f(xi, yi), (5.17)

Соотношение (5.17) является расчётной формулой метода Эйлера численного решения задачи Коши (5.2), (5.6). Вычислив yi , i = 0,1,..,n получим таблицу значений решения в точках xi , i = 0,1,..,n Для оценки погрешности на одном шаге сетки в методе Эйлера разложим точное решение y(x) по формуле Тейлора в окрестности точки xi до членов второго порядка малости

y(xi+1)=y(xi+h)=y(xi)+y'(xi)h+o(h2)=yi+hf(xi,yi)+o(h2).

Сравнивая с (5.17) видим, что погрешность формулы (5.17) равна o(h2). К сожалению, метод Эйлера накапливает ошибку от шага к шагу. Поэтому на практике пользуются либо модификациями метода Эйлера, например методом прогноза и коррекции [14], либо другими методами, в частности методом Рунге-Кутта [14].