Динамическое программирование
Задачи динамического программирования: задача распределения инвестиций, задача замены оборудования, задача Джонсона
xf1(x)f2(x)f3(x)
16.345
25.267
34.34.67.8
4563
5*76.38.2
Решить онлайн
Примеры решений Метод Гомори Графический метод Теория игр Симплекс-метод M-задача Теоремы двойственности Одноканальные СМО Задача коммивояжера Транспортная задача

Виды записи симплекс-метода

Основная идея симплексного метода решения ЗЛП состоит в последовательном улучшении опорных решений ЗЛП.

Существуют несколько форм записи симплексного метода.

  1. Базовая форма записи симплекс-метода;
  2. Симплекс-метод в виде симплексной таблицы;
  3. Модифицированный симплекс-метод;
  4. Симплекс-метод в столбцовой форме;
  5. Симплексный метод в строчечной форме.

Перейти к онлайн решению своей задачи

Определим максимальное значение целевой функции F(X) = 3x1+5x2+4x3 при следующих условиях-ограничений.
0.1x1+0.2x2+0.4x3≤1100
0.05x1+0.02x2+0.02x3≤120
3x1+x2+2x3≤8000

Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме).
0.1x1 + 0.2x2 + 0.4x3 + 1x4 + 0x5 + 0x6 = 1100
0.05x1 + 0.02x2 + 0.02x3 + 0x4 + 1x5 + 0x6 = 120
3x1 + 1x2 + 2x3 + 0x4 + 0x5 + 1x6 = 8000

Базовая форма записи симплекс-метода

Решение ведется путем выражения базисных переменных через небазисные:
x0 = 3x1+5x2+4x3
x4 = 1100-0.1x1-0.2x2-0.4x3
x5 = 120-0.05x1-0.02x2-0.02x3
x6 = 8000-3x1-x2-2x3

Симплекс-метод в виде симплексной таблицы

Решение ведется в виде симплексной таблицы. Форма разработана для вычислений на ЭВМ. При использовании искусственного базиса используется специальное число М (обычно 10000).
План  Базис  В  x 1  x 2  x 3  x 4  x 5  x 6  min  
1 x4 1100 0.1 0.2 0.4 1 0 0 5500
x5 120 0.05 0.02 0.02 0 1 0 6000
x6 8000 3 1 2 0 0 1 8000
Индексная строка F(X1) 0 -3 -5 -4 0 0 0 0
2 x2 5500 0.5 1 2 5 0 0 11000
x5 10 0.04 0 -0.02 -0.1 1 0 250
x6 2500 2.5 0 0 -5 0 1 1000
Индексная строка F(X2) 27500 -0.5 0 6 25 0 0 0
3 x2 5375 0 1 2.25 6.25 -12.5 0 11000
x1 250 1 0 -0.5 -2.5 25 0 250
x6 1875 0 0 1.25 1.25 -62.5 1 1000
Индексная строка F(X3) 27625 0 0 5.75 23.75 12.5 0 0

Модифицированный симплекс-метод

Матрица коэффициентов A = aij

Матрица b.

Итерация №1.
<X> = (4, 5, 6)

Матрица c.
c = (-3, -5, -4, 0, 0, 0)
cB = (0, 0, 0)
cN = (-3, -5, -4)

Вычисляем:
Матрицу B-1 вычисляем через алгебраические дополнения.

u = cBB-1 = (0, 0, 0)

см. также Матричное описание симплекс-метода

Симплекс-метод в столбцовой форме

Переходим к столбцовой форме симплекс-метода. Выразим каждую переменную через небазисные.
x0 = 0-3(-x1)-5(-x2)-4(-x3)+0(-x4)+0(-x5)+0(-x6)
x1 = 0-1(-x1)+0(-x2)+0(-x3)+0(-x4)+0(-x5)+0(-x6)
x2 = 0+0(-x1)-1(-x2)+0(-x3)+0(-x4)+0(-x5)+0(-x6)
x3 = 0+0(-x1)+0(-x2)-1(-x3)+0(-x4)+0(-x5)+0(-x6)
x4 = 1100+0.1(-x1)+0.2(-x2)+0.4(-x3)+1(-x4)+0(-x5)+0(-x6)
x5 = 120+0.05(-x1)+0.02(-x2)+0.02(-x3)+0(-x4)+1(-x5)+0(-x6)
x6 = 8000+3(-x1)+1(-x2)+2(-x3)+0(-x4)+0(-x5)+1(-x6)

Данной системе соответствует таблица T0.

0 -1 0 0
0 0 -1 0
0 0 0 -1
1100 0.1 0.2 0.4
120 0.05 0.02 0.02
8000 3 1 2
0 -3 -5 -4

Симплексный метод в строчечной форме

В качестве начальной допустимой базы можно взять B0 = <4, 5, 6>. Ей будет соответствовать следующая таблица.
1100 0.1 0.2 0.4 1 0 0
120 0.05 0.02 0.02 0 1 0
8000 3 1 2 0 0 1
0 -3 -5 -4 0 0 0

Матрица Q, составленная из коэффициентов системы, называется симплекс-таблицей, соответствующей базе В. Симплекс-таблица называется допустимой, или прямо допустимой, если qi0 ≥ 0. Элементы qi0 последней строки симплекс-таблицы Q называются относительными оценками.

Формы решения методом искусственного базиса

За использование искусственных переменных, вводимых в целевую функцию, накладывается так называемый штраф величиной М, очень большое положительное число, которое обычно не задается.
Полученный базис называется искусственным, а метод решения называется методом искусственного базиса.
Причем искусственные переменные не имеют отношения к содержанию поставленной задачи, однако они позволяют построить стартовую точку, а процесс оптимизации вынуждает эти переменные принимать нулевые значения и обеспечить допустимость оптимального решения.

Формы решения методом искусственного базиса:

  1. M-метод (симплекс-таблица);
  2. двухэтапный или двухфазный симплекс-метод (Базовая форма записи, Модифицированный симплекс-метод, Симплекс-метод в столбцовой форме, Симплексный метод в строчечной форме).
ЕГЭ по математике
Yandex.Просвещение представляет бесплатные видеокурсы по ЕГЭ с возможностью прохождения тестов
Подробнее
Транспортная задача
Используя метод минимального тарифа, представить первоначальный план для решения транспортной задачи. Проверить на оптимальность, используя метод потенциалов. Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов
1234b
112436
243858
3276310
a4688 
Решить онлайн
Динамическое программирование
Задачи динамического программирования: задача распределения инвестиций, задача замены оборудования, задача Джонсона
xf1(x)f2(x)f3(x)
16.345
25.267
34.34.67.8
4563
5*76.38.2
Решить онлайн
Курсовые на заказ