Примеры решений Метод Гомори Симплекс-метод Метод Фогеля Транспортная задача Задача о назначениях Распределительный метод Метод потенциалов Задача коммивояжера Открытые и закрытые задачи

Метод дифференциальных рент

Назначение. Онлайн-калькулятор предназначен для решения транспортной задачи методом дифференциальных рент (см. пример решения). Для этого выберите размерность матрицы тарифов (количество поставщиков и количество магазинов).
Количество столбцов (магазины)
Количество строк (поставщики)

Алгоритм метода дифференциальных рент

Если при определении оптимального плана ТЗ методом потенциалов сначала находился какой-нибудь опорный план, а затем он последовательно улучшался, то при нахождении решения ТЗ методом дифференциальных рент сначала распределяют между пунктами назначения часть груза (так называемое оптимальное распределение) и на последующих итерациях постепенно уменьшают общую величину нераспределенных поставок. Первоначальный вариант распределения груза определяют следующим образом.

В каждом из столбцов таблицы данных находят минимальный тариф. Найденные числа заключают в кружки, а клетки, в которых стоят указанные числа, заполняют. В них записывают максимально возможные числа. В результате получают некоторое распределение поставок груза в пункты назначения. Это распределение в общем случае не удовлетворяет ограничениям исходной транспортной задачи. Поэтому в результате последующих шагов следует постепенно сокращать нераспределенные поставки груза так, чтобы при этом общая стоимость перевозок оставалась минимальной. Для этого сначала определяют избыточные и недостаточные строки.

Строки, соответствующие поставщикам, запасы которых полностью распределены, а потребности пунктов назначения, связанных с данными потребителями запланированными поставками, не удовлетворены, считаются недостаточными. Эти строки иногда называют также отрицательными. Строки, запасы которых исчерпаны не полностью, считаются избыточными. Иногда их называют также положительными.

После того, как определены избыточные и недостаточные строки, для каждого из столбцов находят разности между числом в кружке и ближайшим к нему тарифом, записанным в избыточной строке. Если число в кружке находится в положительной строке, то разность не определяют. Среди полученных чисел находят наименьшее. Это число называется промежуточной рентой. После определения промежуточной ренты переходят к новой таблице. Эта таблица получается из предыдущей таблицы прибавлением к соответствующим тарифам, стоящим в отрицательных строках, промежуточной ренты. Остальные элементы остаются прежними. При этом все клетки новой таблицы считают свободными. После построения новой таблицы начинают заполнение ее клеток. Теперь уже число заполняемых клеток на одну больше, чем на предыдущем этапе. Эта дополнительная клетка находится в столбце, в котором была записана промежуточная рента. Все остальные клетки находятся по одной в каждом из столбцов, и в них записаны наименьшие для данного столбца числа, заключенные в кружки. Заключены в кружки и два одинаковых числа, стоящих в столбце, в котором в предыдущей таблице была записана промежуточная рента.

Поскольку в новой таблице число заполняемых клеток больше, чем число столбцов, то при заполнении клеток следует пользоваться специальным правилом, которое состоит в следующем. Выбирают некоторый столбец (строку), в котором имеется одна клетка с помещенным в ней кружком. Эту клетку заполняют и исключают из рассмотрения данный столбец (строку). После этого берут некоторую строку (столбец), в которой имеется одна клетка с помещенным в ней кружком. Эту клетку заполняют и исключают из рассмотрения данную строку (столбец). Продолжая так, после конечного числа шагов заполняют все клетки, в которых помещены кружки с заключенными в них числами. Если к тому же удается распределить весь груз, то получают оптимальный план. Если же оптимальный план ТЗ не получен, то переходят к новой таблице. Для этого находят избыточные и недостаточные строки, промежуточную ренту и строят новую таблицу. При этом могут возникнуть некоторые затруднения при определении знака строки, когда ее нераспределенный остаток равен нулю. В этом случае строку считают положительной при условии, что вторая заполненная клетка, стоящая в столбце, связанном с данной строкой еще одной заполненной клеткой, расположена в положительной строке.

После описанных выше итераций нераспределенный остаток становится равным нулю. В результате получается оптимальный план ТЗ.

Болит горло
Как быстро вылечить ангину, гланды, тонзиллит
Природные средства, проверенные временем и врачами
Подробнее
ЕГЭ по математике
Yandex.Просвещение представляет бесплатные видеокурсы по ЕГЭ с возможностью прохождения тестов
Подробнее
Метод Гомори
Метод Гомори
Метод Гомори. Решение задачи целочисленного программирования
Решить онлайн
Курсовые на заказ