Сетевой график
Сетевая задача
Ранний срок наступления события: поздний срок наступления события, резервы времени событий
Решить онлайн
Примеры решений Теория игр Задача о назначениях Поток сети Сетевой график онлайн Задача коммивояжера Системы МО Транспортная задача Симплекс-метод Двойственная задача

Параметры сетевых моделей и методы их расчета

Основные параметры сетевых моделей — это критический путь, резервы времени событий, работ и путей. Кроме этих показателей имеется ряд вспомогательных, которые являются исходными для получения дополнительных характеристик по анализу и оптимизации сетевого плана комплекса работ.
При расчетах применяют следующие обозначения параметров сетевой модели: Рассмотрим определения и модели расчета параметров сетевой модели.

Ранний срок свершения j-го события tjp — наиболее ранний (минимальный) из возможных моментов наступления данного события при заданной продолжительности работ.

Поздний срок свершения j-го события tjn — наиболее поздний (максимальный) из допустимых моментов наступления данного события, при котором еще возможно выполнение всех последующих работ в установленный срок.

Резерв времени на свершение j-го события Rj — это промежуток времени, на который может быть отсрочено наступление события j без нарушения сроков завершения всего комплекса, определяется как разность между поздним tjn и ранним tjp сроками наступления события Rj = tjn - tjp.

Ранний срок начала работы tijP.H — наиболее ранний (минимальный) из возможных моментов начала данной работы при заданной продолжительности работ. Он совпадает с ранним сроком наступления ее начального события:

tijP.H= tjp

Ранний срок окончания работы tijP.O — наиболее ранний (минимальный) из возможных моментов окончания данной работы при заданной продолжительности работ. Он превышает ранний срок наступления ее события i на величину продолжительности работы:

tijP.O= tiP+tij

Поздний срок начала работы tijП.H — наиболее поздний (максимальный) из допустимых моментов начала данной работы, при котором еще возможно выполнение всех последующих работ в установленный срок:

tijП.H= tjП-tij

Поздний срок окончания работы tijП.О — наиболее поздний (максимальный) из допустимых моментов окончания данной работы, при котором еще возможно выполнение последующих работ в установленный срок:

tijП.О= tjП

Полный резерв времени работы (i,j) rijП — максимальное время, на которое можно отсрочить начало или увеличить продолжительность работы ttj без изменения общего срока выполнения комплекса:

rijП = tjП -tiP-tij

Свободный резерв времени работы (i,j) rijC.B — максимальное время, на которое можно отсрочить начало или увеличить продолжительность работы при условии, что все события сети наступают в свои ранние сроки:

rijC.B= tjP- tiP-tij

Полный резерв времени пути R(Lп), — показывает, на сколько могут быть увеличены продолжительности всех работ в сумме пути Ln относительно критического пути LKP:

R(Lп)=t(LKP)-t(LП)=TKP-TП

Коэффициент напряженности работы (i,j) kijH — характеризует напряженность по срокам выполнения работы (i,j) и определяется по формуле:

kijH = (t(Lmax) - t'(Lkp)/(Tkp - t'(Lkp))
где t(Lmax) - длительность максимального из некритических путей, проходящих через работу (i,j); t'(Lkp) - продолжительность части критических работ, входящих в рассматривыемый путь Lmax.

Чем ближе коэффициент напряженности к 1,0, тем сложнее выполнять эту работу в установленные сроки.

Методы расчета параметров сетевой модели делятся на две группы.
В первую группу входят аналитические методы, которые включают вычисления по формулам непосредственно на сетевом графике, табличный и матричный методы (см. также метод потенциалов.).
Ко второй группе относятся методы основанные на теории статистического моделирования, которые целесообразно применять при расчете стохастических сетей с очень большим разбросом возможных сроков выполнения работ.

Временные параметры сетевых графиков

Сетевая модель имеет ряд характеристик, которые позволяют определить степень напряженности выполнения отдельных работ, а также всего их комплекса и принять решение о перераспределении ресурсов.
Ранний срок наступления события tр(i) - самый ранний из возможных сроков наступления события. Он равен продолжительности максимального пути от исходного события до данного.
tр(i) = max t[Lр(i)] (2.1)
Например, tр(7)=19, т.к. L1=(1,2,4,7), L2=(1,3,4,7),
t(L1)=5+12=17  <  t(L2)=7+12=19.
Ранний срок начала работы tр.н.(i,j) равен продолжительности максимального пути от исходного до начального события данной работы.
tр.н.(i,j)=max t[Ln(i)](2.2)
Например, tр.н.(7,11)=19, т.к. L1=(1,2,4,7), L2=(1,3,4,7),
t(L1)=5+12=17 <t(L2)=7+12=19.
Ранний срок начала работы равен раннему сроку наступления начального события данной работы.
tр.н.(i,j) = tр(i) (2.3)
Ранний срок окончания работы tр.о.( i,j) равен сумме раннего срока начала работы и продолжительности данной работы.
tр.(i,j)= tр.н.(i,j) + t(i,j) (2.4)
Например, tр.о.(7,11)= tр.н.(7,11) + t(7,11)= 19+8=27.
Поздний срок наступления события  tп( i) равен разности между продолжительностью критического пути и продолжительностью максимального пути от данного события до завершающего.
tп(i) =Tкр - max t[Lк(i)](2.5)
Например,  tп(7)=19, т.к. L1=(7,11), L2=(7,9,11), t(L1)=8  >  t(L2)=4,
tп(7) = Tкр  -  max t[Lк(7)]=27 - 8=19.
Для событий критического пути tр( i)=tп(i), для других событий tр(i)<tп(i).
Поздний срок окончания работы tп.о.( i,j) – это самый поздний срок окончания работы, при котором планируемый срок окончания проекта не меняется, он равен разности между продолжительностью критического пути и продолжительностью максимального пути от конечного события данной работы до завершающего события.
tп.о.(i,j)=Tкр - max t[Lк(j)] (2.6)
Поздний срок окончания работы равен позднему сроку наступления конечного события  tп.о.(i,j) =  tп(j). Например, tп.о.(4,7) = tп(7)=19.
Поздний срок начала работы tп.н.( i,j) – самый поздний срок начала работы, при котором планируемый срок окончания проекта не меняется.
tп.(i,j)= tп.(i,j)  -  t(i,j) (2.7)
Например, tп.н.(4,7)= tп.о.(4,7) - t(4,7)=19-12=7.
Для работ критического пути ранние и поздние сроки начала и окончания работ равны: tр.н.(4,7)= tп.н.(4,7)=7, tр.о.(4,7)= tп.о.(4,7)=19.
Работы,  не лежащие на критическом пути, могут иметь резервы времени.
Полный резерв времени Rп( i,j) – максимальное время, на которое можно увеличить продолжительность данной работы, не изменяя продолжительности критического пути.
Rп (i,j)= tп(j) - tр(i) -  t(i,j)
Rп(i,j)= tп (i,j) - tр.(i,j) (2.8)
Rп (i,j)= tп.(i,j) - tр.о.(i,j)
Свободный резерв времени Rс( i,j)  равен разности между ранним началом последующей работы и ранним окончанием рассматриваемой работы.
Rс(i,j)= tр (j,к) - tр.(i,j) (2.9)

Перейти к онлайн решению своей задачи

ЕГЭ по математике
Yandex.Просвещение представляет бесплатные видеокурсы по ЕГЭ с возможностью прохождения тестов
Подробнее
Метод Гомори
Метод Гомори
Метод Гомори. Решение задачи целочисленного программирования
Решить онлайн
Транспортная задача
Используя метод минимального тарифа, представить первоначальный план для решения транспортной задачи. Проверить на оптимальность, используя метод потенциалов. Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов
1234b
112436
243858
3276310
a4688 
Решить онлайн
Курсовые на заказ