Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Примеры решений Задача Джонсона Симплекс метод Метод прогонки
Задача замены оборудования Задача распределения инвестиций
Параметры сетевой модели Задача коммивояжера Многоканальные СМО

Задача оптимального распределения инвестиций

Назначение сервиса. Данный сервис предназначен для решения задачи оптимального распределения инвестиций в онлайн режиме. Результаты вычислений оформляются в отчете формата Word.
Такого рода задачи основаны на функции Беллмана и при решении используется метод обратной прогонки (см. Типовые задания). Также можно воспользоваться сервисом Процедура прямой прогонки.
Инструкция. Выберите количество предприятий и количество строк (количество вариантов эффективного вложения), нажмите Далее (см. Пример заполнения). Если доход и остатки предприятий задан в виде функций f(x) и g(x), задача решается через этот калькулятор.
Количество предприятий
Количество строк (количество вариантов эффективного вложения)

Пример №1. Определите оптимальный план расширения производства трех предприятий, если известна их прибыль в год при отсутствии вложений и при инвестировании 1, 2, 3 или 4 млн. Определите, при каком инвестировании будет максимальный процент прироста прибыли.

f1 f2 f3 xi
40 30 35 0
90 110 95 1
395 385 270 2
440 470 630 3
620 740 700 4

I этап. Условная оптимизация.
1-ый шаг. k = 3.

e2 u3 e3 = e2 - u3 f3(u3) F*3(e3) u3(e3)
1 0 1 35
1 0 95 95 1
2 0 2 35
1 1 95
2 0 270 270 2
3 0 3 35
1 2 95
2 1 270
3 0 630 630 3
4 0 4 35
1 3 95
2 2 270
3 1 630
4 0 700 700 4


2-ый шаг. k = 2.

e1 u2 e2 = e1 - u2 f2(u2) F*2(e1) F1(u2,e1) F*2(e2) u2(e2)
1 0 1 30 95 125 125 0
1 0 110 0 110
2 0 2 30 270 300
1 1 110 95 205
2 0 385 0 385 385 2
3 0 3 30 630 660 660 0
1 2 110 270 380
2 1 385 95 480
3 0 470 0 470
4 0 4 30 700 730
1 3 110 630 740 740 1
2 2 385 270 655
3 1 470 95 565
4 0 740 0 740

3-ый шаг. k = 1.

e0 u1 e1 = e0 - u1 f1(u1) F*1(e0) F0(u1,e0) F*1(e1) u1(e1)
1 0 1 40 125 165 165 0
1 0 90 0 90
2 0 2 40 385 425 425 0
1 1 90 125 215
2 0 395 0 395
3 0 3 40 660 700 700 0
1 2 90 385 475
2 1 395 125 520
3 0 440 0 440
4 0 4 40 740 780 780 0
1 3 90 660 750
2 2 395 385 780
3 1 440 125 565
4 0 620 0 620

Примечание: Столбцы 1 (вложенные средства), 2 (проект) и 3 (остаток средств) для всех трех таблиц одинаковы, поэтому их можно было бы сделать общими. Столбец 4 заполняется на основе исходных данных о функциях дохода, значения в столбце 5 берутся из столбца 7 предыдущей таблицы, столбец 6 заполняется суммой значений столбцов 4 и 5 (в таблице 3-го шага столбцы 5 и 6 отсутствуют).
В столбце 7 записывается максимальное значение предыдущего столбца для фиксированного начального состояния, и в 8 столбце записывается управление из 2 столбца, на котором достигается максимум в 7.
Этап II. Безусловная оптимизация.
Из таблицы 3-го шага имеем F*1(e0 = 4 млн.руб.) = 780 тыс.руб., то есть максимальная прибыль от инвестирования e0 = 4 млн.руб. равна 780 тыс.руб.
Из этой же таблицы получаем, что первому предприятию следует выделить u*1(e0 = 4 млн.руб.) = 0 млн.руб.
При этом остаток средств составит: e1 = e0 - u1, e1 = 4 - 0 = 4 млн.руб.
Из таблицы 2-го шага имеем F*2(e1 = 4 млн.руб.) = 740 тыс.руб., т.е. максимальная прибыль при e1 = 4 млн.руб. равна 740 тыс.руб.
Из этой же таблицы получаем, что второму предприятию следует выделить u*2(e1 = 4 млн.руб.) = 1 млн.руб.
При этом остаток средств составит: e2 = e1 - u2, e2 = 4 - 1 = 3 млн.руб.
Последнему предприятию достается 3 млн.руб. Итак, инвестиции в размере 4 млн.руб. необходимо распределить следующим образом: первому предприятию ничего не выделять, второму предприятию выделить 1 млн.руб., третьему предприятию выделить 3 млн.руб., что обеспечит максимальную прибыль, равную 780 тыс.руб.

Пример №2. Имеются 4 предприятия, между которыми необходимо распределить 100 тыс. усл. ед. средств. Значения прироста выпуска продукции на предприятии в зависимости от выделенных средств Х представлены в таблице. Составить оптимальный план распределения средств, позволяющий максимизировать общий прирост выпуска продукции.