Сетевой график
Сетевая задача
Ранний срок наступления события: поздний срок наступления события, резервы времени событий
Решить онлайн
Примеры решений Теория игр Задача о назначениях Поток сети Сетевой график онлайн Задача коммивояжера Системы МО Транспортная задача Симплекс-метод Двойственная задача

Сетевое планирование. Теория

  1. Параметры сетевых моделей и методы их расчета
  2. Расчёт основных показателей сетевого графика
  3. Оптимизация сетевой модели по критерию число исполнителей
  4. Оптимизация сетевой модели по критерию затраты
  5. Оптимизация сетевого графика методом время – стоимость

Сетевой график состоит из двух элементов: работ и событий. Работами называют любые процессы, приводящие к достижению определенных результатов (событий). Кроме работ действительных, требующих затрат времени, существуют так называемые фиктивные работы. Это связь между двумя событиями, не требующая затрат времени.

Работа на графике изображается стрелкой, над которой указывается затрачиваемое на нее время. Длина стрелки и ее ориентация на графике не имеют значения. Желательно только выдерживать направление стрелок так, чтобы начальное событие для работы (обозначается i) располагалось слева в сетевом графике, а конечное (обозначается j) - справа. Для отображения фиктивных работ используют пунктирные стрелки, над которыми время не указывается или проставляется ноль.

Таким образом, событие - это результат выполненной работы, поэтому его формулировка записывается всегда в совершенной форме, не допускающей различного толкования. Например, формулировка работы - "разработка технических условий на печь", формулировка ее конечного события - "технические условия на печь разработаны". Следовательно, событие не имеет продолжительности во времени. Изображается оно кружком или прямоугольником, внутри которого указывается порядковый номер или шифр события.

Правила построения сетевой модели

Правило 1. Каждая операция в сети представляется одной и только одной дугой (стрелкой). Ни одна из операций не должна появляться в модели дважды. При этом следует различать случай, когда какая-либо операция разбивается на части; тогда каждая часть изображается отдельной дугой.

Правило 2. Ни одна пара операций не должна определяться одинаковыми начальным и конечным событиями. Возможность неоднозначного определения операций через события появляется в случае, когда две или большее число операций допустимо выполнять одновременно.

Правило 3. При включении каждой операции в сетевую модель для обеспечения правильного упорядочения необходимо дать ответы на следующие вопросы:
а) Какие операции необходимо завершить непосредственно перед началом рассматриваемой операции?
б) Какие операции должны непосредственно следовать после завершения данной операции?
в) Какие операции могут выполняться одновременно с рассматриваемой?

При построении сетевого графика следует соблюдать следующие правила:


Рис. 1. Наличие замкнутых контуров

Рис. 2. Введение фиктивной работы

Правила построения сетевых графиков

При построении сетевого графика необходимо соблюдать ряд правил.
  1. В сетевой модели не должно быть «тупиковых» событий, то есть событий, из которых не выходит ни одна работа, за исключением завершающего события.
  2. В сетевом графике не должно быть «хвостовых» событий, то есть событий, которым не предшествует хотя бы одна работа, за исключением исходного.
  3. В сети не должно быть замкнутых контуров и петель, то есть путей, соединяющих некоторые события с ними же самими.
  4. Любые два события должны быть непосредственно связаны не более чем одной работой.
  5. В сети рекомендуется иметь одно исходное и одно завершающее событие.
  6. Сетевой график должен быть упорядочен. То есть события и работы должны располагаться так, чтобы для любой работы предшествующее ей событие было расположено левее и имело меньший номер по сравнению с завершающим эту работу событием.
Построение сетевого графика начинается с изображения начального события, которое обозначается цифрой 1 и обводится кружком. Из начального события выпускают стрелки, соответствующие работам, которым не предшествуют какие-либо другие работы. По определению, момент завершения работы является событием. Поэтому каждая стрелка
завершается кружком – событием, в котором проставляется номер этого события. Нумерация событий произвольная. На следующем этапе построения изображаем работы, которым предшествуют уже нарисованные работы (то есть которые опираются на уже построенные работы) и т. д. На следующем этапе отражаем логические взаимосвязи между работами и определяем конечное событие сетевого графика, на которое не опираются никакие работы. Построение закончено, далее необходимо провести упорядочение сетевого графика.
Простой метод упорядочения сетевого графика основан на понятии ранга события: Начальное событие относим к нулевому рангу и перечеркиваем одной чертой все работы, выходящие из этого события. К первому рангу относим те события, которые не имеют входящих неперечеркнутых стрелок. Далее перечеркиваем двумя чертами работы, выходящие из событий первого ранга. Ко второму рангу относим те события, которые не имеют входящих неперечеркнутых стрелок и т.д.
Онлайн-университет
Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа
Программа курсов
Редактор формул онлайн
Удобный редактор формул для Word, Latex и Web.
Редактор формул онлайн
Подробнее
Финансовый анализ онлайн
Анализ и диагностика финансово-хозяйственной деятельности предприятия:
· Оценка имущественного положения
· Анализ ликвидности и платежеспособности
· Анализ финансовой устойчивости
· Анализ рентабельности и оборачиваемости
· Анализ движения денежных средств
· Анализ финансовых результатов и многое другое
Подробнее
Курсовые на заказ