Распределение Пуассона. Проверка гипотезы о виде распределения

Задача 10.. Отдел технического контроля проверил n партий однотипных изделий и установил, что число Х нестандартных изделий в одной партии имеет эмпирическое распределение, приведенное в таблице, в одной строке которой указано количество xi нестандартных изделий в одной партии, а в другой строке – количество ni партий, содержащих xi нестандартных изделий. Требуется при уровне значимости α=0.05 проверить гипотезу о том, что случайная величина Х (число нестандартных изделий в одной партии) распределена по закону Пуассона.
xi 0 1 2 3 4 5
ni 370 360 190 63 14 3

Проверим гипотезу о том, что Х распределено по закону Пуассона с помощью сервиса проверка статистических гипотез.


где pi — вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону; λ = xср.
i = 0: p0 = 0.3679, np0 = 367.88
i = 1: p1 = 0.3679, np1 = 367.88
i = 2: p2 = 0.1839, np2 = 183.94
i = 3: p3 = 0.0613, np3 = 61.31
i = 4: p4 = 0.0153, np4 = 15.33
i = 5: p5 = 0.0031, np5 = 3.07
i = 6: 17=14 + 3
i = 6: 18.39=15.33 + 3.07
i Наблюдаемая частота ni pi Ожидаемая частота npi Слагаемые статистики Пирсона Ki
0 370 0.37 367.88 0.0122
1 360 0.37 367.88 0.17
2 190 0.18 183.94 0.2
3 63 0.0613 61.31 0.0464
4 17 0.0153 18.39 0.11
1000 0.53

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;α) находим по таблицам распределения «хи-квадрат» и заданным значениям s, k (число интервалов), r=1 (параметр λ).
Kkp = 11.14329; Kнабл = 0.53
Наблюдаемое значение статистики Пирсона не попадает в критическую область: Кнабл < Kkp, поэтому нет оснований отвергать основную гипотезу. Справедливо предположение о том, что данные выборки имеют распределение Пуассона.

Перейти к онлайн решению своей задачи

Пример. В цехе с 10 станками ежедневно регистрировалось число вышедших из строя станков. Всего было проведено 200 наблюдений, результаты которых приведены ниже.
Необходимо:

  • Определить исследуемый признак и его тип (дискретный или непрерывный).
  • В зависимости от типа признака построить полигон или гистограмму относительных частот.
  • На основе визуального анализа полигона (гистограммы) сформулировать гипотезу о законе распределения признака.
  • Вычислить выборочные характеристики изучаемого признака: среднее, дисперсию, среднее квадратическое (стандартное) отклонение.
  • Для генеральной средней и дисперсии построить доверительные интервалы, соответствующие доверительной вероятности 0,99.
  • При уровне значимости 0,05 проверить гипотезу о том, что число выбывших из строя станков имеет распределение Пуассона.

Решение. Задан дискретный признак. Строим таблицу для расчета показателей.
xi Кол-во, fi xi * fi Накопленная частота, S (x - xср) * f (x - xср)2 * f (x - xср)3 * f Частота, fi/n
0 41 0 41 73.8 132.84 -239.11 0.21
1 62 62 103 49.6 39.68 -31.74 0.31
2 45 90 148 9 1.8 0.36 0.23
3 22 66 170 26.4 31.68 38.02 0.11
4 16 64 186 35.2 77.44 170.37 0.08
5 8 40 194 25.6 81.92 262.14 0.04
6 4 24 198 16.8 70.56 296.35 0.02
7 2 14 200 10.4 54.08 281.22 0.01
8 0 0 200 0 0 0 0
9 0 0 200 0 0 0 0
10 0 0 200 0 0 0 0
200 360 246.8 490 777.6 1

Находим показатели центра распределения.
Средняя взвешенная


Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = Xmax - Xmin
R = 10 - 0 = 10
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии.


Среднее квадратическое отклонение.

Каждое значение ряда отличается от среднего значения 1.8 не более, чем на 1.57
Оценка среднеквадратического отклонения.

Доверительный интервал для генерального среднего.

Поскольку n>30, то определяем значение tkp по таблицам функции Лапласа.
В этом случае 2Ф(tkp) = 1 - γ
Ф(tkp) = (1 - γ)/2 = 0.99/2 = 0.495
По таблице функции Лапласа найдем, при каком tkp значение Ф(tkp) = 0.495
tkp(γ) = (0.495) = 2.58

(1.8 - 0.29;1.8 + 0.29) = (1.51;2.09)
С вероятностью 0.99 можно утверждать, что среднее значение при выборке большего объема не выйдет за пределы найденного интервала.
Доверительный интервал для дисперсии.
Вероятность выхода за нижнюю границу равна P(χ2n-1 < hH) = (1-γ)/2 = 0.005. Для количества степеней свободы k = 199, по таблице распределения хи-квадрат находим:
χ2(199;0.005) = 255.2642.
Случайная ошибка дисперсии:


Вероятность выхода за верхнюю границу равна P(χ2n-1 ≥ hB) = 1 - P(χ2n-1 < hH) = 1 - 0.005 = 0.995. Для количества степеней свободы k = 199, по таблице распределения хи-квадрат находим:
χ2(199;0.995) = 152.241.
Случайная ошибка дисперсии:


(2.46 - 1.92; 2.46 + 3.22)
(0.54; 5.68)
Найдем верхнюю границу доверительного интервала для среднеквадратического отклонения с надежностью γ = 0.99.

P(χ2n-1 > hγ) = 0.99. Для количества степеней свободы k = 199, по таблице распределения хи-квадрат находим:
χ2(199;0.99) = 156.432.
Случайная ошибка дисперсии:


0 ≤ σ2 ≤ 3.13
Проверка гипотез о виде распределения.
2. Проверим гипотезу о том, что Х распределено по закону Пуассона.


где pi — вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону.
Примем в качестве оценки параметра λ распределения Пуассона выборочную среднюю xср = 1.8. Следовательно, предполагаемый закон Пуассона имеет вид:

i = 0: p0 = 0.17, np0 = 33.06
i = 1: p1 = 0.3, np1 = 59.51
i = 2: p2 = 0.27, np2 = 53.56
i = 3: p3 = 0.16, np3 = 32.13
i = 4: p4 = 0.0723, np4 = 14.46
i = 5: p5 = 0.026, np5 = 5.21
i = 6: p6 = 0.00781, np6 = 1.56
i = 7: p7 = 0.00201, np7 = 0.4
i = 8: p8 = 0.000452, np8 = 0.0904
i = 9: p9 = 9.0E-5, np9 = 0.0181
i = 10: p10 = 1.6E-5, np10 = 0.00325
Объединим малочисленные частоты: (10,9,8,7,6) и соответствующие им теоретические частоты.

i Наблюдаемая частота ni pi Ожидаемая частота npi Слагаемые статистики Пирсона Ki
0 41 0.17 33.06 1.91
1 62 0.3 59.51 0.1
2 45 0.27 53.56 1.37
3 22 0.16 32.13 3.2
4 16 0.0723 14.46 0.16
5 8 0.026 5.21 1.5
6 6 0.0104 2.07 7.42
200 15.66


Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение Kнабл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: [Kkp;+∞).
Её границу Kkp = χ2(k-r-1;α) находим по таблицам распределения «хи-квадрат» и заданным значениям s, k (число интервалов), r=1 (параметр λ).
Kkp(0.05;5) = 11.07050; Kнабл = 15.66
Наблюдаемое значение статистики Пирсона попадает в критическую область: Кнабл > Kkp, поэтому есть основания отвергать основную гипотезу. Данные выборки распределены не по закону Пуассона.
Полигон частот для закона Пуассона
Нанесем на один график и полигон частот, и вероятности появления событий по закону Пуассона.
Полигон частот и вероятности для закона Пуассона
Открыть диалог Discus Помощь в решении