Однофакторный дисперсионный анализ

Дисперсионный анализ представляет собой систему понятий и технических приемов, позволяющих обобщить процедуру сравнения двух средних для двух выборок, взятых из генеральных совокупностей с нормальным распределением, на случай большого числа выборок.

Назначение сервиса. С помощью данного онлайн-калькулятора можно:

  • провести однофакторный дисперсионный анализ;
  • ответить на вопрос - совпадают или нет средние значения экспериментов;
  • при выбранном уровне значимости подтвердить или опровергнуть нулевую гипотезу H0 о равенстве групповых средних;
Инструкция. Укажите число измерений (количество строк) q, количество уровней фактора p нажмите Далее. Полученное решение сохраняется в файле Word. см. пример однофакторного дисперсионного анализа
Число измерений Количество уровней фактора

Данная процедура обычно используется для отбора значимых факторов для построения множественного уравнения регрессии.

см. также Двухфакторный дисперсионный анализ, Проверка статистических гипотез

Пример. Изделие железнодорожного транспорта с целью испытания на надежность эксплуатируется q раз, i=1,...q на p уровнях времени работы Tj , j=1,..., p. В каждом испытании подсчитываются числа отказов nij. На уровне значимости α = 0,05 исследовать влияние времени работы изделия на число появления отказов методом однофакторного дисперсионного анализа при q=4, p=4. Результаты испытаний nij представлены в таблицах.
Решение.
Процедура однофакторного дисперсионного анализа. Находим групповые средние:

N П1 П2 П3 П4
1 145 210 195 155
2 140 200 190 150
3 150 190 240 180
4 190 195 210 175
xср 156.25 198.75 208.75 165

Обозначим р - количество уровней фактора (р=4). Число измерений на каждом уровне одинаково и равно q=4.
В последней строке помещены групповые средние для каждого уровня фактора.
Общую среднюю можно получить как среднее арифметическое групповых средних:
(1)
На разброс групповых средних процента отказа относительно общей средней влияют как изменения уровня рассматриваемого фактора, так и случайные факторы.
Для того чтобы учесть влияние данного фактора, общая выборочная дисперсия разбивается на две части, первая из которых называется факторной S2ф, а вторая - остаточной S2ост.
С целью учета этих составляющих вначале рассчитывается общая сумма квадратов отклонений вариант от общей средней:
(2)
и факторная сумма квадратов отклонений групповых средних от общей средней, которая и характеризует влияние данного фактора:

Последнее выражение получено путем замены каждой варианты в выражении Rобщ групповой средней для данного фактора.
Остаточная сумма квадратов отклонений получается как разность:
Rост = Rобщ - Rф
Для определения общей выборочной дисперсии необходимо Rобщ разделить на число измерений pq:

а для получения несмещенной общей выборочной дисперсии это выражение нужно умножить на pq/(pq-1):

Соответственно, для несмещенной факторной выборочной дисперсии:

где p-1 - число степеней свободы несмещенной факторной выборочной дисперсии.
С целью оценки влияния фактора на изменения рассматриваемого параметра рассчитывается величина:

Так как отношение двух выборочных дисперсий S2ф и S2ост распределено по закону Фишера-Снедекора, то полученное значение fнабл сравнивают со значением функции распределения

в критической точке fкр, соответствующей выбранному уровню значимости a.
Если fнабл>fкр, то фактор оказывает существенное воздействие и его следует учитывать, в противном случае он оказывает незначительное влияние, которым можно пренебречь.
Для расчета Rнабл и Rф могут быть использованы также формулы:
(4)

Находим общую среднюю по формуле (1):
Для расчета Rобщ по формуле (4) составляем таблицу 2 квадратов вариант:
N П21 П22 П23 П24
1 21025 44100 38025 24025
2 19600 40000 36100 22500
3 22500 36100 57600 32400
4 36100 38025 44100 30625
99225 158225 175825 109550

Общая средняя вычисляется по формуле (1):

Rобщ = 99225 + 158225 + 175825 + 109550 - 4 • 4 • 182.192 = 11748.44
Находим Rф по формуле (5):
Rф = 4(156.252 + 198.752 + 208.752 + 1652) - 4 • 182.192 = 7792.19
Получаем Rост: Rост = Rобщ - Rф = 11748.44 - 7792.19 = 3956.25
Определяем факторную и остаточную дисперсии:

Если средние значения случайной величины, вычисленные по отдельным выборкам одинаковы, то оценки факторной и остаточной дисперсий являются несмещенными оценками генеральной дисперсии и различаются несущественно.
Тогда сопоставление оценок этих дисперсий по критерию Фишера должно показать, что нулевую гипотезу о равенстве факторной и остаточной дисперсий отвергнуть нет оснований.
Оценка факторной дисперсии больше оценки остаточной дисперсии, поэтому можно сразу утверждать не справедливость нулевой гипотезы о равенстве математических ожиданий по слоям выборки.
Иначе говоря, в данном примере фактор Ф оказывает существенное влияния на случайную величину.
Проверим нулевую гипотезу H0: равенство средних значений х.
Находим fнабл

Для уровня значимости α=0.05, чисел степеней свободы 3 и 12 находим fкр из таблицы распределения Фишера-Снедекора.
fкр(0.05; 3; 12) = 3.49
В связи с тем, что fнабл > fкр, нулевую гипотезу о существенном влиянии фактора на результаты экспериментов принимаем.

Задать вопрос или оставить комментарий Помощь в решении Поиск Поддержать проект