Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение

Коэффициент контингенции

Коэффициент контингенции равен коэффициенту корреляции между X и Y и служит для измерения силы связи показателей, измеренных в номинальной шкале.
Коэффициент контингенции формула

Назначение сервиса. С помощью калькулятора производится расчет коэффициента контингенции в онлайн режиме. Полученное решение сохраняется в файле Word.
Инструкция. Укажите размерность таблицы (количество строк и столбцов) без учета итоговых сумм. Например, на рисунке изображена таблица размером 2x2.
Размерность корреляционной таблицы: x

Пример. Получено выборочное распределение отношения респондентов к покупке товара «А» в зависимости от пола. Результаты приведены в таблице:

мужчина женщины ni*
купили 35 15 50
не купили 10 30 40
n*j 45 45 90

Получено выборочное распределение признака «А» в зависимости от B. Результаты приведены в таблице:
Для проверки независимости признаков «A» и «B» проверяем нулевую гипотезу Н0:(pij = pi*p*j для всех i, j). Вычислим статистику χ2 набл по формуле:

где nij – наблюдаемые частоты.
Если значение χ2набл попало в критическую область: χ2 > χ2крит(α ; v=1), нулевая гипотеза отвергается с вероятностью ошибки α и признаки считаются зависимыми.
В этом случае имеет смысл измерить полученную связь между X и Y с помощью коэффициентов связи (сопряженности).
Рассчитаем теоретические частоты по формуле: для всех клеток таблицы




Получим таблицу сопряженности теоретических частот распределения:
A1 A2 ni*
P1 25 25 50
P2 20 20 40
n*j 45 45 90

Вычислим статистику χ2:

По таблице χ2-распределения находим:
χ2крит(0.05;1) = 3.84146
где v = (r-1)(s-1) = (2-1)(2-1) = 1 - число степеней свободы.
Критическая область имеет вид χ2 > χ2крит. Так как вычисленное значение хи-квадрат попадает в критическую область, то гипотеза о независимости отвергается с вероятностью ошибки 0,05.
Воспользуемся критерием χ2*

Сравнив χ2* с χ2крит, 16.245>3.84146 отвергаем гипотезу о независимости.

Определим силу связи по коэффициентам сопряженности.
Коэффициент ассоциации:

Коэффициент коллигации:

Коэффициент контингенции

Коэффициент φ (Коэффициент Чупрова-Крамера)

τ-коэффициент (коэффициент Гудмена-Краскала):

Коэффициент сопряженности Пирсона:

Таким образом, связь между желанием приобрести товар «А» и полом средняя.

Пример №2. Есть ли статистически значимая связь между удовлетворенностью перспективами должностного и профессионального роста в зависимости от пола респондента.

пол удовлетворенность Σ
доволен не доволен
Ж 4 8 12
М 12 6 18
Σ 16 14 30

Решение находим с помощью калькулятора. Для проверки независимости признаков «A» и «B» проверяем нулевую гипотезу Н0:(pij = pi*p*j для всех i, j). Вычислим статистику Χ2 набл по формуле:

где nij – наблюдаемые частоты.
Если значение Χ2набл попало в критическую область: Χ2> Χ2крит(α ;v=1), нулевая гипотеза отвергается с вероятностью ошибки α и признаки считаются зависимыми.
В этом случае имеет смысл измерить полученную связь между X и Y с помощью коэффициентов связи (сопряженности).
Рассчитаем теоретические частоты по формуле:

для всех клеток таблицы




Получим таблицу сопряженности теоретических частот распределения:

A1 A2 ni*
P1 6.4 5.6 12
P2 9.6 8.4 18
n*j 16 14 30
Вычислим статистику Χ2:


По таблице Χ2-распределения находим:
Χ2крит(0.05;1) = 3.84146
где v = (r-1)(s-1) = (2-1)(2-1) = 1 - число степеней свободы.
Критическая область имеет вид Χ2 > Χ2крит. Так как вычисленное значение хи-квадрат не попадает в критическую область, то гипотеза о независимости принимается с вероятностью ошибки 0,05.
Воспользуемся критерием Χ2*
Χ2* = = =
Сравнив Χ2* с Χ2крит, 1.763 < 3.84146 принимаем гипотезу о независимости.
Определим силу связи по коэффициентам сопряженности.
Коэффициент контингенции
Коэффициент контингенции
Таким образом, связь между «А» и «B» не сильная и обратная.
Другими словами, связь между удовлетворенностью перспективами должностного и профессионального роста в зависимости от пола респондента является хотя и зависимой, но слабой.