Уравнение регрессии
Уравнение парной регрессии
Решить онлайн
Примеры решений Коэффициент Спирмена Коэффициент Фехнера Множественная регрессия Нелинейная регрессия Уравнение регрессии Автокорреляция Расчет параметров тренда Ошибка аппроксимации

Средняя ошибка аппроксимации

Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
, где yx - расчетное значение по уравнению.
Значение средней ошибки аппроксимации до 15% свидетельствует о хорошо подобранной модели уравнения.

Относительная ошибка аппроксимации

По семи территориям Уральского района за 199Х г. известны значения двух признаков.

Район Расходы на покупку продовольственных товаров в общих расходах, %, у Среднедневная заработная плата одного работающего, руб., х
Удмуртская респ. 68,8 45,1
Свердловская обл. 61,2 59,0
Башкортостан 59,9 57,2
Челябинская обл. 56,7 61,8
Пермская обл. 55,0 58,8
Курганская обл. 54,3 47,2
Оренбургская обл. 49,3 55,2
Требуется:
1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной;
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации Аср и F-критерий Фишера.

Перейти к онлайн решению своей задачи

Решение проводим при помощь онлайн калькулятора Линейное уравнение регрессии.
а) линейное уравнение регрессии;
Использование графического метода.
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции.


На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.
Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi  для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.

Для наших данных система уравнений имеет вид

Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = -0.35, a = 76.88
Уравнение регрессии: y = -0.35 x + 76.88

x y x 2 y 2 x • y y(x) (yi-ycp) 2 (y-y(x))2 |y - yx|:y
45,1 68,8 2034,01 4733,44 3102,88 61,28 119,12 56,61 0,1094
59 61,2 3481 3745,44 3610,8 56,47 10,98 22,4 0,0773
57,2 59,9 3271,84 3588,01 3426,28 57,09 4,06 7,9 0,0469
61,8 56,7 3819,24 3214,89 3504,06 55,5 1,41 1,44 0,0212
58,8 55 3457,44 3025 3234 56,54 8,33 2,36 0,0279
47,2 54,3 2227,84 2948,49 2562,96 60,55 12,86 39,05 0,1151
55,2 49,3 3047,04 2430,49 2721,36 57,78 73,71 71,94 0,172
384,3 405,2 21338,41 23685,76 22162,34 405,2 230,47 201,71 0,5699

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(45.1) = -0.35*45.1 + 76.88 = 61.28
y(59) = -0.35*59 + 76.88 = 56.47
... ... ...

Ошибка аппроксимации
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации. Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:


Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=5, Fkp = 6.61
Поскольку фактическое значение F < Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

б) степенная регрессия;
Решение проводится с помощью сервиса Нелинейная регрессия. При выборе укажите Степенная y = axb
в) показательная регрессия;
г) модель равносторонней гиперболы.
Система нормальных уравнений.

Для наших данных система уравнений имеет вид
7a + 0.1291b = 405.2
0.1291a + 0.0024b = 7.51
Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 1054.67, a = 38.44
Уравнение регрессии:
y = 1054.67 / x + 38.44
Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.


Поскольку ошибка меньше 15%, то данное уравнение можно использовать в качестве регрессии.

1/x

y

x 2

y 2

x • y

y(x)

(yi-ycp) 2

(y-y(x))2

|y - yx|:y

0.0222

68.8

0.0005

4733.44

1.53

61.82

119.12

48.71

0.1014

0.0169

61.2

0.0003

3745.44

1.04

56.31

10.98

23.9

0.0799

0.0175

59.9

0.0003

3588.01

1.05

56.87

4.06

9.16

0.0505

0.0162

56.7

0.0003

3214.89

0.9175

55.5

1.41

1.44

0.0211

0.017

55

0.0003

3025

0.9354

56.37

8.33

1.88

0.0249

0.0212

54.3

0.0004

2948.49

1.15

60.78

12.86

41.99

0.1193

0.0181

49.3

0.0003

2430.49

0.8931

57.54

73.71

67.93

0.1672

0.1291

405.2

0.0024

23685.76

7.51

405.2

230.47

195.01

0.5645

Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k1=(m) и k2=(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R2=0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
Табличное значение критерия со степенями свободы k1=1 и k2=5, Fkp = 6.61
Поскольку фактическое значение F < Fkp, то коэффициент детерминации статистически не значим (Найденная оценка уравнения регрессии статистически не надежна).

Перейти к онлайн решению своей задачи

Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Инвестиции с JetLend

Удобный сервис для инвестора и заемщика. Инвестируйте в лучшие компании малого бизнеса по ставкам от 16,9% до 37,7% годовых.
Подробнее
Онлайн-университет
Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа
Программа курсов
Курсовые на заказ