Уравнение регрессии
Уравнение парной регрессии
Решить онлайн
Примеры решений Степенная функция y=axb Критерий Фишера Множественная регрессия Коэффициент эластичности Критерий Стьюдента Автокорреляция Расчет параметров тренда Ошибка аппроксимации

Уравнение нелинейной регрессии

Назначение сервиса. С помощью данного онлайн-калькулятора можно найти параметры уравнения нелинейной регрессии (экспоненциальной, степенной, равносторонней гиперболы, логарифмической, показательной) (см. пример).
Инструкция. Укажите количество исходных данных. Полученное решение сохраняется в файле Word. Также автоматически создается шаблон решения в Excel.
Количество строк (исходных данных)
Заданы итоговые значения величин (∑x, ∑x2, ∑xy, ∑y, ∑y2)

Примечание: если необходимо определить параметры параболической зависимости (y = ax2 + bx + c), то можно воспользоваться сервисом Аналитическое выравнивание.
Ограничить однородную совокупность единиц, устранив аномальные объекты наблюдения можно через метод Ирвина или по правилу трех сигм (устранить те единицы, для которых значение объясняющего фактора отклоняется от среднего более, чем на утроенное среднеквадратичное отклонение).
Типовые задания (см. также линейная регрессия)

Типовые задания
Исследуется зависимость производительности труда y от уровня механизации работ x (%) по данным 14 промышленных предприятий. Статистические данные приведены в таблице.
Требуется:
1) Найти оценки параметров линейной регрессии у на х. Построить диаграмму рассеяния и нанести прямую регрессии на диаграмму рассеяния.
2) На уровне значимости α=0.05 проверить гипотезу о согласии линейной регрессии с результатами наблюдений.
3) С надежностью γ=0.95 найти доверительные интервалы для параметров линейной регрессии.

Вместе с этим калькулятором также используют следующие:
Уравнение множественной регрессии

Виды нелинейной регрессии

ВидКласс нелинейных моделей
  1. Полиномальное уравнение регрессии:
    y = a + bx + cx2 (см. метод выравнивания)
  2. Гиперболическое уравнение регрессии: Гиперболическое уравнение регрессии
  3. Квадратичное уравнение регрессии: Квадратичное уравнение регрессии
Нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам
  1. Показательное уравнение регрессии: Показательное уравнение регрессии
  2. Экспоненциальное уравнение регрессии: Экспоненциальное уравнение регрессии
  3. Степенное уравнение регрессии: Степенное уравнение регрессии
  4. Полулогарифмическое уравнение регрессии: y = a + b lg(x)
Нелинейные по оцениваемым параметрам
Здесь ε - случайная ошибка (отклонение, возмущение), отражающая влияние всех неучтенных факторов.

Уравнению регрессии первого порядка - это уравнение парной линейной регрессии.

Уравнение регрессии второго порядка это полиномальное уравнение регрессии второго порядка: y = a + bx + cx2.

Уравнение регрессии третьего порядка соответственно полиномальное уравнение регрессии третьего порядка: y = a + bx + cx2 + dx3.

Чтобы привести нелинейные зависимости к линейной используют методы линеаризации (см. метод выравнивания):

  1. Замена переменных.
  2. Логарифмирование обеих частей уравнения.
  3. Комбинированный.
y = f(x)ПреобразованиеМетод линеаризации
y = b xaY = ln(y); X = ln(x)Логарифмирование
y = b eaxY = ln(y); X = xКомбинированный
y = 1/(ax+b)Y = 1/y; X = xЗамена переменных
y = x/(ax+b)Y = x/y; X = xЗамена переменных. Пример
y = aln(x)+bY = y; X = ln(x)Комбинированный
y = a + bx + cx2x1 = x; x2 = x2Замена переменных
y = a + bx + cx2 + dx3x1 = x; x2 = x2; x3 = x3Замена переменных
y = a + b/xx1 = 1/xЗамена переменных
y = a + sqrt(x)bx1 = sqrt(x)Замена переменных
Пример. По данным, взятым из соответствующей таблицы, выполнить следующие действия:
  1. Построить поле корреляции и сформулировать гипотезу о форме связи.
  2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
  3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
  4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
  5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
  6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
  7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости α=0,05.
  8. Оценить полученные результаты, выводы оформить в аналитической записке.
Год Фактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. - трлн. руб.), y Среднедушевые денежные доходы населения (в месяц), руб. (1995 г. - тыс. руб.), х
1995872515,9
200038132281,1
200150143062
200264003947,2
200377085170,4
200498486410,3
2005124558111,9
20061528410196
20071892812602,7
20082369514940,6
20092515116856,9

Решение. В калькуляторе последовательно выбираем виды нелинейной регрессии. Получим таблицу следующего вида.
Экспоненциальное уравнение регрессии имеет вид y = a ebx
После линеаризации получим: ln(y) = ln(a) + bx
Получаем эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
Уравнение регрессии: y = e7.81321500e0.000162x = 2473.06858e0.000162x

Степенное уравнение регрессии имеет вид y = a xb
После линеаризации получим: ln(y) = ln(a) + b ln(x)
Эмпирические коэффициенты регрессии: b = 0.9626, a = 0.7714
Уравнение регрессии: y = e0.77143204x0.9626 = 2.16286x0.9626

Гиперболическое уравнение регрессии имеет вид y = b/x + a + ε
После линеаризации получим: y=bx + a
Эмпирические коэффициенты регрессии: b = 21089190.1984, a = 4585.5706
Эмпирическое уравнение регрессии: y = 21089190.1984 / x + 4585.5706

Логарифмическое уравнение регрессии имеет вид y = b ln(x) + a + ε
Эмпирические коэффициенты регрессии: b = 7142.4505, a = -49694.9535
Уравнение регрессии: y = 7142.4505 ln(x) - 49694.9535

Показательное уравнение регрессии имеет вид y = a bx + ε
После линеаризации получим: ln(y) = ln(a) + x ln(b)
Эмпирические коэффициенты регрессии: b = 0.000162, a = 7.8132
y = e7.8132*e0.000162x = 2473.06858*1.00016x

xy1/xln(x)ln(y)
515.98720.001946.256.77
2281.138130.0004387.738.25
306250140.0003278.038.52
3947.264000.0002538.288.76
5170.477080.0001938.558.95
6410.398480.0001568.779.2
8111.9124550.00012399.43
10196152849.8E-59.239.63
12602.7189287.9E-59.449.85
14940.6236956.7E-59.6110.07
16856.9251515.9E-59.7310.13
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Инвестиции с JetLend

Удобный сервис для инвестора и заемщика. Инвестируйте в лучшие компании малого бизнеса по ставкам от 16,9% до 37,7% годовых.
Подробнее
Онлайн-университет
Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа
Программа курсов
Курсовые на заказ