Примеры решений Коэффициент Спирмена Коэффициент Фехнера Множественная регрессия Нелинейная регрессия Уравнение регрессии Автокорреляция Расчет параметров тренда Ошибка аппроксимации

Распределение Фишера (F-распределение)

В MS Excel для получения значения критерия, необходимо использовать команду FРАСПОБР(вероятность; степени_свободы1; степени_свободы2)
a=0.10 число степеней свободы v1
1 2 3 4 5 6 7 8 9 10 11 12 15 20 24 30 40 60 120
число степеней свободы v2 1 39,86 49,50 53,59 55,83 57,24 58,20 58,91 59,44 59,86 60,19 60,50 60,71 61,22 61,74 62,00 62,26 62,53 62,79 63,06
2 8,53 9,00 9,16 9,24 9,29 9,33 9,35 9,37 9,38 9,39 9,40 9,41 9,42 9,44 9,45 9,46 9,47 9,47 9,48
3 5,54 5,46 5,39 5,34 5,31 5,28 5,27 5,25 5,24 5,23 5,22 5,22 5,20 5,18 5,18 5,17 5,16 5,15 5,14
4 4,54 4,32 4,19 4,11 4,05 4,01 3,98 3,95 3,94 3,92 3,91 3,90 3,87 3,84 3,83 3,82 3,80 3,79 3,78
5 4,06 3,78 3,62 3,52 3,45 3,40 3,37 3,34 3,32 3,30 3,28 3,27 3,24 3,21 3,19 3,17 3,16 3,14 3,12
6 3,78 3,46 3,29 3,18 3,11 3,05 3,01 2,98 2,96 2,94 2,92 2,90 2,87 2,84 2,82 2,80 2,78 2,76 2,74
7 3,59 3,26 3,07 2,96 2,88 2,83 2,78 2,75 2,72 2,70 2,68 2,67 2,63 2,59 2,58 2,56 2,54 2,51 2,49
8 3,46 3,11 2,92 2,81 2,73 2,67 2,62 2,59 2,56 2,54 2,52 2,50 2,46 2,42 2,40 2,38 2,36 2,34 2,32
9 3,36 3,01 2,81 2,69 2,61 2,55 2,51 2,47 2,44 2,42 2,40 2,38 2,34 2,30 2,28 2,25 2,23 2,21 2,18
10 3,29 2,92 2,73 2,61 2,52 2,46 2,41 2,38 2,35 2,32 2,30 2,28 2,24 2,20 2,18 2,16 2,13 2,11 2,08
11 3,23 2,86 2,66 2,54 2,45 2,39 2,34 2,30 2,27 2,25 2,23 2,21 2,17 2,12 2,10 2,08 2,05 2,03 2,00
12 3,18 2,81 2,61 2,48 2,39 2,33 2,28 2,24 2,21 2,19 2,17 2,15 2,10 2,06 2,04 2,01 1,99 1,96 1,93
13 3,14 2,76 2,56 2,43 2,35 2,28 2,23 2,20 2,16 2,14 2,12 2,10 2,05 2,01 1,98 1,96 1,93 1,90 1,88
14 3,10 2,73 2,52 2,39 2,31 2,24 2,19 2,15 2,12 2,10 2,08 2,05 2,01 1,96 1,94 1,91 1,89 1,86 1,83
15 3,07 2,70 2,49 2,36 2,27 2,21 2,16 2,12 2,09 2,06 2,04 2,02 1,97 1,92 1,90 1,87 1,85 1,82 1,79
16 3,05 2,67 2,46 2,33 2,24 2,18 2,13 2,09 2,06 2,03 2,01 1,99 1,94 1,89 1,87 1,84 1,81 1,78 1,75
17 3,03 2,64 2,44 2,31 2,22 2,15 2,10 2,06 2,03 2,00 1,98 1,96 1,91 1,86 1,84 1,81 1,78 1,75 1,72
18 3,01 2,62 2,42 2,29 2,20 2,13 2,08 2,04 2,00 1,98 1,96 1,93 1,89 1,84 1,81 1,78 1,75 1,72 1,69
19 2,99 2,61 2,40 2,27 2,18 2,11 2,06 2,02 1,98 1,96 1,94 1,91 1,86 1,81 1,79 1,76 1,73 1,70 1,67
20 2,97 2,59 2,38 2,25 2,16 2,09 2,04 2,00 1,96 1,94 1,92 1,89 1,84 1,79 1,77 1,74 1,71 1,68 1,64
22 2,95 2,56 2,35 2,22 2,13 2,06 2,01 1,97 1,93 1,90 1,88 1,86 1,81 1,76 1,73 1,70 1,67 1,64 1,60
24 2,93 2,54 2,33 2,19 2,10 2,04 1,98 1,94 1,91 1,88 1,85 1,83 1,78 1,73 1,70 1,67 1,64 1,61 1,57
26 2,91 2,52 2,31 2,17 2,08 2,01 1,96 1,92 1,88 1,86 1,84 1,81 1,76 1,71 1,68 1,65 1,61 1,58 1,54
28 2,89 2,50 2,29 2,16 2,06 2,00 1,94 1,90 1,87 1,84 1,81 1,79 1,74 1,69 1,66 1,63 1,59 1,56 1,52
30 2,88 2,49 2,28 2,14 2,05 1,98 1,93 1,88 1,85 1,82 1,79 1,77 1,72 1,67 1,64 1,61 1,57 1,54 1,50
40 2,84 2,44 2,23 2,09 2,00 1,93 1,87 1,83 1,79 1,76 1,73 1,71 1,66 1,61 1,57 1,54 1,51 1,47 1,42
60 2,79 2,39 2,18 2,04 1,95 1,87 1,82 1,77 1,74 1,71 1,68 1,66 1,60 1,54 1,51 1,48 1,44 1,40 1,35
120 2,75 2,35 2,13 1,99 1,90 1,82 1,77 1,72 1,68 1,65 1,62 1,60 1,55 1,48 1,45 1,41 1,37 1,32 1,26

α=0.05 число степеней свободы v1
1 2 3 4 5 6 7 8 9 10 11 12 15 20 24 30 40 60 120
число степеней свободы v2 1 161 200 216 225 230 234 237 239 271 242 243 244 246 248 249 250 251 252 253
2 18,5 19,0 19,2 19,2 19,3 19,3 19,4 19,4 19,4 19,4 19,4 19,4 19,4 19,4 19,5 19,5 19,5 19,5 19,5
3 10,1 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,76 8,74 8,70 8,66 8,64 8,62 8,59 8,57 8,55
4 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,94 5,91 5,86 5,80 5,77 5,75 5,72 5,69 5,66
5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,71 4,68 4,62 4,56 4,53 4,50 4,46 4,43 4,40
6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,03 4,00 3,94 3,87 3,84 3,81 3,77 3,74 3,70
7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,60 3,57 3,51 3,44 3,41 3,38 3,34 3,30 3,27
8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,31 3,28 3,22 3,15 3,12 3,08 3,04 3,01 2,97
9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,10 3,07 3,01 2,94 2,90 2,86 2,83 2,79 2,75
10 4,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,94 2,91 2,85 2,77 2,74 2,70 2,66 2,62 2,58
11 4,84 3,98 3,59 3,36 3,20 3,09 3,01 2,95 2,90 2,85 2,82 2,79 2,72 2,65 2,61 2,57 2,53 2,49 2,45
12 4,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 2,75 2,72 2,69 2,62 2,54 2,51 2,47 2,43 2,38 2,34
13 4,67 3,81 3,41 3,18 3,03 2,92 2,83 2,77 2,71 2,67 2,63 2,60 2,53 2,46 2,42 2,38 2,34 2,30 2,25
14 4,60 3,74 3,34 3,11 2,96 2,85 2,76 2,70 2,65 2,60 2,57 2,53 2,46 2,39 2,35 2,31 2,27 2,22 2,18
15 4,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,51 2,48 3,52 3,37 3,29 3,21 3,13 3,05 2,96
16 4,49 3,63 3,24 3,01 2,85 2,74 2,66 2,59 2,54 2,49 2,46 2,42 2,35 2,28 2,24 2,19 2,15 2,11 2,06
17 4,45 3,59 3,20 2,96 2,81 2,70 2,61 2,55 2,49 2,45 2,41 2,38 2,31 2,23 2,19 2,15 2,10 2,06 2,01
18 4,41 3,55 3,16 2,93 2,77 2,66 2,58 2,51 2,46 2,41 2,37 2,34 2,27 2,19 2,15 2,11 2,06 2,02 1,97
19 4,38 3,52 3,13 2,90 2,74 2,63 2,54 2,48 2,42 2,38 2,34 2,31 2,23 2,16 2,11 2,07 2,03 1,98 1,93
20 4,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,31 2,28 2,20 2,12 2,08 2,04 1,99 1,95 1,90
22 4,30 3,44 3,05 2,82 2,66 2,55 2,46 2,40 2,34 2,30 2,26 2,23 2,15 2,07 2,03 1,98 1,94 1,89 1,84
24 4,26 3,40 3,01 2,78 2,62 2,51 2,42 2,36 2,30 2,25 2,21 2,18 2,11 2,03 1,98 1,94 1,89 1,84 1,79
26 4,23 3,37 2,98 2,74 2,59 2,47 2,39 2,32 2,27 2,22 2,18 2,15 2,07 1,99 1,95 1,90 1,85 1,80 1,75
28 4,20 3,34 2,95 2,71 2,56 2,45 2,36 2,29 2,24 2,19 2,15 2,12 2,04 1,96 1,91 1,87 1,82 1,77 1,71
30 4,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,13 2,09 2,01 1,93 1,89 1,84 1,79 1,74 1,68
40 4,08 3,23 2,84 2,61 2,45 2,34 2,25 2,18 2,12 2,08 2,04 2,00 1,92 1,84 1,79 1,74 1,69 1,64 1,58
60 4,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,95 1,92 1,84 1,75 1,70 1,65 1,59 1,53 1,47
120 3,92 3,07 2,68 2,45 2,29 2,17 2,09 2,02 1,96 1,91 1,87 1,83 1,75 1,66 1,61 1,55 1,50 1,43 1,35

Критические точки распределения Фишера

(k1— число степеней свободы большей дисперсии,
k2—число степеней свободы меньшей дисперсии)
Уровень значимости a =0.01
k1k21 2 3 4 5 6 7 8 9 10 11 12
1 4052 4999 5403 5625 5764 5889 5928 5981 6022 6056 6082 6106
2 98.49 99.01 90.17 99.25
99.33
99.30
99.34
99.36
99.36
99.40
99.41
99.42
3 34.12 30.81 29.46 28.71
28.24
27.91
27.67
27.49
27.34
27.23
27.13
27.05
4 21.20 18.00 16.69 15.98
15.52
15.21
14.98
14.80
14.66
14.54
14.45
14.37
5 16.26 13.27 12.06 11.39
10.97
10.67
10.45
10.27
10.15
10.05
9.96
9.89
6 13.74 10.92 9.78 9.15
8.75
8.47
8.26
8.10
7.98
7.87
7.79
7.72
7 12.25 9.55 8.45 7.85
7.46
7.19
7.00
6.84
6.71
6.62
6.54
6.47
8 11.26 8.65 7.59 7.01
6.63
6.37
6.19
6.03
5.91
5.82
5.74
5.67
9 10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11
10 10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71
11 9.86 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40
12 9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16
13 9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96
14 8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45

Уровень значимости a=0.05
k1k21 2 3 4 5 6 7 8 9 10 11 12
1 161 200 216 225 230 234 237 239 241 242 243 244
2 18.5 19.00 19.16 19.25 19:30 19.33 19.36 19.37 19.38 19.39 19.40 19.41
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69
13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53
15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42
17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38