Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Примеры решений Найти производную Найти интеграл Формула Байеса
Система СВ X,Y Уравнение регрессии Проверка гипотезы
Корреляционная таблица Формула Бернулли Математическое ожидание

Корреляционная таблица

Назначение сервиса. С помощью сервиса по заданной корреляционной таблице можно найти: Решение проводится в онлайн режиме (прямо на сайте) с оформлением всех результатов в формате Word.
Инструкция для решения. Укажите размерность корреляционной таблицы (количество строк и столбцов) и ее вид.
Размерность корреляционной таблицы: x
Y/Xx1x2xn
y1n1n2nn
ymn1mn2mnnm
X/Yy1y2yn
x1n1n2nn
xmn1mn2mnnm
см. также Системы случайных величин.

Пример 1. По данной корреляционной таблице построить прямые регрессии с X на Y и с Y на X. Найти соответствующие коэффициенты регрессии и коэффициент корреляции между X и Y.

y/x 15 20 25 30 35 40
100 2 2
120 4 3 10 3
140 2 50 7 10
160 1 4 3
180 1 1

Решение:
Уравнение линейной регрессии с y на x будем искать по формуле

а уравнение регрессии с x на y, использовав формулу:

где xx, y - выборочные средние величин x и y, σx, σy - выборочные среднеквадратические отклонения.
Находим выборочные средние:
x = (15(1 + 1) + 20(2 + 4 + 1) + 25(4 + 50) + 30(3 + 7 + 3) + 35(2 + 10 + 10) + 40(2 + 3))/103 = 27.961
y = (100(2 + 2) + 120(4 + 3 + 10 + 3) + 140(2 + 50 + 7 + 10) + 160(1 + 4 + 3) + 180(1 + 1))/103 = 136.893
Выборочные дисперсии:
σ2x = (152(1 + 1) + 202(2 + 4 + 1) + 252(4 + 50) + 302(3 + 7 + 3) + 352(2 + 10 + 10) + 402(2 + 3))/103 - 27.9612 = 30.31
σ2y = (1002(2 + 2) + 1202(4 + 3 + 10 + 3) + 1402(2 + 50 + 7 + 10) + 1602(1 + 4 + 3) + 1802(1 + 1))/103 - 136.8932 = 192.29
Откуда получаем среднеквадратические отклонения:
и
Определим коэффициент корреляции:

где ковариация равна:
Cov(x,y) = (35•100•2 + 40•100•2 + 25•120•4 + 30•120•3 + 35•120•10 + 40•120•3 + 20•140•2 + 25•140•50 + 30•140•7 + 35•140•10 + 15•160•1 + 20•160•4 + 30•160•3 + 15•180•1 + 20•180•1)/103 - 27.961 • 136.893 = -50.02
Запишем уравнение линий регрессии y(x):

и уравнение x(y):

Построим найденные уравнения регрессии на чертеже, из которого сделаем следующие вывод:
1) обе линии проходят через точку с координатами (27.961; 136.893)
2) все точки расположены близко к линиям регрессии.

Поле корреляции

Пример 2. По данным корреляционной таблицы найти условные средние y и x. Оценить тесноту линейной связи между признаками x и y и составить уравнения линейной регрессии y по x и x по y. Сделать чертеж, нанеся его на него условные средние и найденные прямые регрессии. Оценить силу связи между признаками с помощью корреляционного отношения.
Корреляционная таблица:

X / Y 2 4 6 8 10
1 5 4 2 0 0
2 0 6 3 3 0
3 0 0 1 2 3
5 0 0 0 0 1

Уравнение линейной регрессии с y на x имеет вид:

Уравнение линейной регрессии с x на y имеет вид:

найдем необходимые числовые характеристики.
Выборочные средние:
x = (2(5) + 4(4 + 6) + 6(2 + 3 + 1) + 8(3 + 2) + 10(3 + 1) + )/30 = 5.53
y = (2(5) + 4(4 + 6) + 6(2 + 3 + 1) + 8(3 + 2) + 10(3 + 1) + )/30 = 1.93
Дисперсии:
σ2x = (22(5) + 42(4 + 6) + 62(2 + 3 + 1) + 82(3 + 2) + 102(3 + 1))/30 - 5.532 = 6.58
σ2y = (12(5 + 4 + 2) + 22(6 + 3 + 3) + 32(1 + 2 + 3) + 52(1))/30 - 1.932 = 0.86
Откуда получаем среднеквадратические отклонения:
σx = 2.57 и σy = 0.93
и ковариация:
Cov(x,y) = (2•1•5 + 4•1•4 + 6•1•2 + 4•2•6 + 6•2•3 + 8•2•3 + 6•3•1 + 8•3•2 + 10•3•3 + 10•5•1)/30 - 5.53 • 1.93 = 1.84
Определим коэффициент корреляции:


Запишем уравнения линий регрессии y(x):

и вычисляя, получаем:
yx = 0.28 x + 0.39
Запишем уравнения линий регрессии x(y):

и вычисляя, получаем:
xy = 2.13 y + 1.42
Если построить точки, определяемые таблицей и линии регрессии, увидим, что обе линии проходят через точку с координатами (5.53; 1.93) и точки расположены близко к линиям регрессии.
Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=30-m-1 = 28 находим tкрит:
tкрит (n-m-1;α/2) = (28;0.025) = 2.048
где m = 1 - количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим.

Пример 3. Распределение 50 предприятий пищевой промышленности по степени автоматизации производства Х (%) и росту производительности труда Y (%) представлено в таблице. Необходимо:
1. Вычислить групповые средние i и j x y, построить эмпирические линии регрессии.
2. Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость:
а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений;
б) вычислить коэффициент корреляции; на уровне значимости α= 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными Х и Y;
в) используя соответствующее уравнение регрессии, оценить рост производительности труда при степени автоматизации производства 43%.
Скачать решение

Пример. По корреляционной таблице рассчитать ковариацию и коэффициент корреляции, построить прямые регрессии.

Пример №1
Пример №2

Пример 4. Найти выборочное уравнение прямой Y регрессии Y на X по данной корреляционной таблице.
Решение находим с помощью калькулятора.
Скачать
Пример №4

Пример 5. С целью анализа взаимного влияния прибыли предприятия и его издержек выборочно были проведены наблюдения за этими показателями в течение ряда месяцев: X - величина месячной прибыли в тыс. руб., Y - месячные издержки в процентах к объему продаж.
Результаты выборки сгруппированы и представлены в виде корреляционной таблицы, где указаны значения признаков X и Y и количество месяцев, за которые наблюдались соответствующие пары значений названных признаков.
Решение.
Пример №5
Пример №6
Пример №7

Пример 6. Данные наблюдений над двумерной случайной величиной (X, Y) представлены в корреляционной таблице. Методом наименьших квадратов найти выборочное уравнение прямой регрессии Y на X. Построить график уравнения регрессии и показать точки (x;y)б рассчитанные по таблице данных.
Решение.
Скачать решение

Пример 7. Дана корреляционная таблица для величин X и Y, X- срок службы колеса вагона в годах, а Y - усредненное значение износа по толщине обода колеса в миллиметрах. Определить коэффициент корреляции и уравнения регрессий.

X / Y 0 2 7 12 17 22 27 32 37 42
0 3 6 0 0 0 0 0 0 0 0
1 25 108 44 8 2 0 0 0 0 0
2 30 50 60 21 5 5 0 0 0 0
3 1 11 33 32 13 2 3 1 0 0
4 0 5 5 13 13 7 2 0 0 0
5 0 0 1 2 12 6 3 2 1 0
6 0 1 0 1 0 0 2 1 0 1
7 0 0 1 1 0 0 0 1 0 0

Решение.
Скачать решение

Пример 8. По заданной корреляционной таблице определить групповые средние количественных признаков X и Y. Построить эмпирические и теоретические линии регрессии. Предполагая, что между переменными X и Y существует линейная зависимость:

  1. Вычислить выборочный коэффициент корреляции и проанализировать степень тесноты и направления связи между переменными.
  2. Определить линии регрессии и построить их графики.
Скачать