Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Примеры решений Найти производную Найти интеграл Формула Байеса
Система СВ X,Y Уравнение регрессии Проверка гипотезы
Корреляционная таблица Формула Бернулли Математическое ожидание

Формулы Бейеса

Формула Байеса:

Вероятности P(Hi) гипотез Hi называют априорными вероятностями - вероятности до проведения опытов.
Вероятности P(A/Hi) называют апостериорными вероятностями – вероятности гипотез Hi, уточненных в результате опыта.

Пример №1. Прибор может собираться из высококачественных деталей и из деталей обычного качества. Около 40% приборов собираются из высококачественных деталей. Если прибор собран из высококачественных деталей, его надежность (вероятность безотказной работы) за время t равна 0,95; если из деталей обычного качества — его надежность равна 0,7. Прибор испытывался в течение времени t и работал безотказно. Найдите вероятность того, что он собран из высококачественных деталей.
Решение. Возможны две гипотезы: H1 — прибор собран из высококачественных деталей; H2 — прибор собран из деталей обычного качества. Вероятности этих гипотез до опыта: P(H1) = 0,4, P(H2) = 0,6. В результате опыта наблюдалось событие A — прибор безотказно работал время t. Условные вероятности этого события при гипотезах H1 и H2 равны: P(A|H1) = 0,95; P(A|H2) = 0,7. По формуле (12) находим вероятность гипотезы H1 после опыта:

Пример №2. Два стрелка независимо один от другого стреляют по одной мишени, делая каждый по одному выстрелу. Вероятность попадания в мишень для первого стрелка 0,8, для второго 0,4. После стрельбы в мишени обнаружена одна пробоина. Предполагая, что два стрелка не могут попасть в одну и ту же точку, найдите вероятность того, что в мишень попал первый стрелок.
Решение. Пусть событие A — после стрельбы в мишени обнаружена одна пробоина. До начала стрельбы возможны гипотезы:
H1 — ни первый, ни второй стрелок не попадет, вероятность этой гипотезы: P(H1) = 0,2 · 0,6 = 0,12.
H2 — оба стрелка попадут, P(H2) = 0,8 · 0,4 = 0,32.
H3 — первый стрелок попадет, а второй не попадет, P(H3) = 0,8 · 0,6 = 0,48.
H4 — первый стрелок не попадет, а второй попадет, P (H4) = 0,2 · 0,4 = 0,08.
Условные вероятности события A при этих гипотезах равны:

После опыта гипотезы H1 и H2 становятся невозможными, а вероятности гипотез H3 и H4
будут равны:


Итак, вероятнее всего, что мишень поражена первым стрелком.

Пример №3. В монтажном цехе к устройству присоединяется электродвигатель. Электродвигатели поставляются тремя заводами-изготовителями. На складе имеются электродвигатели названных заводов соответственно в количестве 19,6 и 11 шт., которые могут безотказно работать до конца гарантийного срока соответственно с вероятностями 0,85, 0,76 и 0,71. Рабочий берет случайно один двигатель и монтирует его к устройству. Найдите вероятность того, что смонтированный и работающий безотказно до конца гарантийного срока электродвигатель поставлен соответственно первым, вторым или третьим заводом-изготовителем.
Решение. Первым испытанием является выбор электродвигателя, вторым — работа электродвигателя во время гарантийного срока. Рассмотрим следующие события:
A — электродвигатель работает безотказно до конца гарантийного срока;
H1 — монтер возьмет двигатель из продукции первого завода;
H2 — монтер возьмет двигатель из продукции второго завода;
H3 — монтер возьмет двигатель из продукции третьего завода.
Вероятность события A вычисляем по формуле полной вероятности:

Условные вероятности заданы в условии задачи:

Найдем вероятности


По формулам Бейеса (12) вычисляем условные вероятности гипотез Hi:

Пример №4. Вероятности того, что во время работы системы, которая состоит из трех элементов, откажут элементы с номерами 1, 2 и 3, относятся как 3: 2: 5. Вероятности выявления отказов этих элементов равны соответственно 0,95; 0,9 и 0,6.
а) Найдите вероятность обнаружения отказа в работе системы.
б) В условиях данной задачи во время работы системы обнаружен отказ. Какой из элементов вероятнее всего отказал?

Решение.
Пусть А – событие отказа. Введем систему гипотез H1 – отказ первого элемента, H2 – отказ второго элемента, H3 – отказ третьего элемента.
Находим вероятности гипотез:
P(H1) = 3/(3+2+5) = 0.3
P(H2) = 2/(3+2+5) = 0.2
P(H3) = 5/(3+2+5) = 0.5

Согласно условию задачи условные вероятности события А равны:
P(A|H1) = 0.95, P(A|H2) = 0.9, P(A|H3) = 0.6

а) Найдите вероятность обнаружения отказа в работе системы.
P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) + P(H3)*P(A|H3)  = 0.3*0.95 + 0.2*0.9 + 0.5*0.6 = 0.765

б) В условиях данной задачи во время работы системы обнаружен отказ. Какой из элементов вероятнее всего отказал?
P1 = P(H1)*P(A|H1)/ P(A) = 0.3*0.95 / 0.765 = 0.373
P2 = P(H2)*P(A|H2)/ P(A) = 0.2*0.9 / 0.765 = 0.235
P3 = P(H3)*P(A|H3)/ P(A) = 0.5*0.6 / 0.765 = 0.392

Максимальная вероятность у третьего элемента.