Построить график функции Производная функции dydx График 3D Упростить выражение
Примеры решений Найти производную Найти интеграл Формула Байеса Система СВ X,Y Уравнение регрессии Проверка гипотезы Корреляционная таблица Формула Бернулли Математическое ожидание

Как решать задачи по теории вероятностей

  1. Задачи по теории вероятностей:
    • сборник задач про шары в урне
    • задачи на тему Формула полной вероятности
      На предприятии имеется три станка одного типа. Один из них дает 20% общей продукции, второй – 30%, третий – 50 %. При этом первый станок производит 5% брака, второй 4%, третий – 2%. Найти вероятность того, что случайно отобранное негодное изделие выпущено первым станком.
  2. Примеры задач по математической статистике.
  3. Примеры задач по статистике: показатели вариации, проверка гипотез о виде распределения, группировка статистических данных, доверительный интервал.
    Составьте вариационный ряд по частотам или интервалам. Вычислить параметры распределения (среднюю выборочную, дисперсию, среднее квадратическое отклонение). Составить доверительный интервал X±2σ.

Статистические таблицы

Примеры решений по теории вероятностей и математической статистике

Задание. Вероятностный прогноз для величины Х -процентного изменения стоимости акций по отношению к их текущему курсу в течение 6 месяцев дан в виде закона распределения:
xi 5 10 15 20 25 30
pi 0.1 0.1 0.3 0.2 0.2 0.1

Найти вероятность того, что покупка акций будет более выгодна, чем помещение денег на банковский депозит под 3% в месяц сроком на 6 месяцев.
Решение находим с помощью калькулятора.. Математическое ожидание находим по формуле m = ∑xipi.
Математическое ожидание M[X].
M[x] = 5*0.1 + 10*0.1 + 15*0.3 + 20*0.2 + 25*0.2 + 30*0.1 = 18
Дисперсию находим по формуле d = ∑x2ipi - M[x]2.
Дисперсия D[X].
D[X] = 52*0.1 + 102*0.1 + 152*0.3 + 202*0.2 + 252*0.2 + 302*0.1 - 182 = 51
Среднее квадратическое отклонение σ(x).
sigma(x) = sqrt{D[X]} = sqrt{51} = 7.14
Функция распределения F(X).
F(x<=5) = 0
F(5< x <=10) = 0.1
F(10< x <=15) = 0.1 + 0.1 = 0.2
F(15< x <=20) = 0.3 + 0.2 = 0.5
F(20< x <=25) = 0.2 + 0.5 = 0.7
F(25< x <=30) = 0.2 + 0.7 = 0.9
F(x>30) = 1
Вероятность.
P(a <= X <= b) = F(b) - F(a)

Пример №2. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х, заданной следующим законом распределения. Решение

Пример №3. Закон распределения дискретной случайной величины Х приведен в табл. Требуется: а) определить математическое ожидание М(X), дисперсию D(Х) и среднее квадратическое отклонение σ(Х) случайной величины Х; б) построить график этого распределения.

xi 0 1 2 3 4 5 6
pi 0.01 0.12 0.23 0.28 0.19 0.11 0.06
Решение.
Математическое ожидание находим по формуле m = ∑xipi.
Математическое ожидание M[X].
M[x] = 0*0.01 + 1*0.12 + 2*0.23 + 3*0.28 + 4*0.19 + 5*0.11 + 6*0.06 = 3.09
Дисперсию находим по формуле d = ∑x2ipi - M[x]2.
Дисперсия D[X].
D[X] = 02*0.01 + 12*0.12 + 22*0.23 + 32*0.28 + 42*0.19 + 52*0.11 + 62*0.06 - 3.092 = 1.9619
Среднее квадратическое отклонение σ(x): σ = sqrt(D[X]) = sqrt(1.96) = 1.4
Функция распределения F(X).
F(x<=0) = 0
F(0< x <=1) = 0.01
F(1< x <=2) = 0.12 + 0.01 = 0.13
F(2< x <=3) = 0.23 + 0.13 = 0.36
F(3< x <=4) = 0.28 + 0.36 = 0.64
F(4< x <=5) = 0.19 + 0.64 = 0.83
F(5< x <=6) = 0.11 + 0.83 = 0.94
F(x>6) = 1
Функция распределения F(X)
Функция распределения F(X)

Перейти к онлайн решению своей задачи

Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Редактор формул онлайн
Удобный редактор формул для Word, Latex и Web.
Редактор формул онлайн
Подробнее