Диф. уравнения
Решение дифференциальных уравнений
y′+2xy=2xy3
xydx+(x+1)dy=0
Решить онлайн
Примеры решений Найти производную Найти интеграл Формула Байеса Система СВ X,Y Уравнение регрессии Проверка гипотезы Корреляционная таблица Формула Бернулли Математическое ожидание

Формула полной вероятности

Если события H1, H2, …, Hn образуют полную группу, то для вычисления вероятности произвольного события можно использовать формулу полной вероятности:
P(А) = P(A/H1)·P(H1)+P(A/H2)·P(H2)
в соответствии с которой вероятность наступления события А может быть представлена как сумма произведений условных вероятностей события А при условии наступления событий Hi на безусловные вероятности этих событий Hi. Эти события Hi называют гипотезами.

Из формулы полной вероятности следует формула Байеса:

Вероятности P(Hi) гипотез Hi называют априорными вероятностями - вероятности до проведения опытов.
Вероятности P(A/Hi) называют апостериорными вероятностями – вероятности гипотез Hi, уточненных в результате опыта.

Назначение сервиса. Онлайн-калькулятор предназначен для вычисления полной вероятности с оформлением всего хода решения в формате Word (см. примеры решения задач).

Количество объектов

Задано количество изделий Заданы вероятности бракованных изделий
Завод №1: P(H1) = . Вероятность стандартных изделий: P(A|H1) =
Завод №2: P(H2) = . Вероятность стандартных изделий: P(A|H2) =
Завод №3: P(H3) = . Вероятность стандартных изделий: P(A|H3) =



Если исходные данные представлены в процентах (%), то их необходимо представить в виде доли. Например, 60%0.6.

Пример №1. Магазин получает электролампочки с двух заводов, причем доля первого завода составляет 25%. Известно, что доля брака на этих заводах равна соответственно 5 % и 10 % от всей выпускаемой продукции. Продавец наугад берет одну лампочку. Какова вероятность того, что она окажется бракованной?
Решение: Обозначим через А событие - «лампочка окажется бракованной». Возможны следующие гипотезы о происхождении этой лампочки: H1 - «лампочка поступила с первого завода». H2- «лампочка поступила со второгозавода». Так как доля первого завода составляет 25 %, то вероятности этих гипотез равны соответственно ; .
Условная вероятность того, что бракованная лампочка выпущена первым заводом – , вторым заводом - p(A/H2)= искомую вероятность того, что продавец взял бракованную лампочку, находим по формуле полной вероятности
р(А) = P(H1)· p(A/H1)+P(H2)·(A/H2)=0,25·0,05+0,75·0,10=0,0125+0,075=0.0875
Ответ: р(А) = 0,0875.

Построение гипергеометрического распределения.

Пример №2. Магазин получил две равные по количеству партии одноименного товара. Известно что, 25% первой партии и 40% второй партии составляет товар первого сорта. Какова вероятность того, что наугад выбранная единица товара будет не первого сорта?
Решение:
Обозначим через А событие - «товар окажется первого сорта». Возможны следующие гипотезы о происхождении этого товара: H1 - «товар из первой партии». H2- «товар из второй партии». Так как доля первой партии составляет 25%, то вероятности этих гипотез равны соответственно ; .
Условная вероятность того, что товар из первой партии – , из второй партии - искомую вероятностьтого, что наугад выбранная единица товара будет первого сорта
р(А) = P(H1)· p(A/H1)+P(H2)·(A/H2)=0,25·0,5+0,4·0,5=0,125+0,2=0.325
Тогда, вероятность того, что наугад выбранная единица товара будет не первого сорта будет равна: 1- 0.325 = 0,675
Ответ: .

Пример №3. Известно, что 5% мужчин и 1% женщин - дальтоники. Наугад выбранный человек оказалась не дальтоником. Какова вероятность, что это мужчина (считать, что мужчины и женщины поровну).
Решение.
Событие A - наугад выбранный человек оказалась не дальтоником.
Найдем вероятность появления этого события.
P(A) = P(A|H=мужчина) + P(A|H=женщина) = 0.95*0.5 + 0.99*0.5 = 0.475 + 0.495 = 0.97
Тогда вероятность, что это мужчина составит: p = P(A|H=мужчина) / P(A) = 0.475/0.97 = 0.4897

Пример №4. В спортивной олимпиаде принимают участие 4 студента с первого курса, с второго - 6, с третьей - 5. Вероятности того, что студент с первого, второго, третьего курса победит на олимпиаде, равны соответственно 0,9; 0,7 и 0,8.
а) Найдите вероятность победы наугад выбранным ее участником.
б) В условиях данной задачи один студент победил на олимпиаде. К какой группе он вероятнее всего принадлежит?
Решение.
Событие A - победа наугад выбранного участника.
Здесь P(H1) = 4/(4+6+5) = 0.267, P(H2) = 6/(4+6+5) = 0.4, P(H3) = 5/(4+6+5) = 0.333,
P(A|H1) = 0.9, P(A|H2) = 0.7,P(A|H3) = 0.8
а) P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) + P(H3)*P(A|H3) = 0.267*0.9 + 0.4*0.7 + 0.333*0.8 = 0.787
б) Решение можно получить, используя этот калькулятор.
p1 = P(H1)*P(A|H1)/P(A)
p2 = P(H2)*P(A|H2)/P(A)
p3 = P(H3)*P(A|H3)/P(A)
Из p1, p2, p3 выбрать максимальную.

Пример №5. На предприятии имеется три станка одного типа. Один из них дает 20% общей продукции, второй – 30%, третий – 50 %. При этом первый станок производит 5% брака, второй 4%, третий – 2%. Найти вероятность того, что случайно отобранное негодное изделие выпущено первым станком.

Финансовый анализ онлайн
Анализ и диагностика финансово-хозяйственной деятельности предприятия:
· Оценка имущественного положения
· Анализ ликвидности и платежеспособности
· Анализ финансовой устойчивости
· Анализ рентабельности и оборачиваемости
· Анализ движения денежных средств
· Анализ финансовых результатов и многое другое
Подробнее
Аннуитетные платежи онлайн
Расчет аннуитетных платежей по схеме постнумерандо и пренумерандо с помощью удобного калькулятора.
Аннуитетные платежи онлайн
Подробнее
Профессии будущего
РБК Тренды изучили прогнозы российских и зарубежных футурологов, и составили список самых востребованных профессий в ближайшие 30 лет. Это профессии из 19 отраслей: от медицины и транспорта до культуры и космоса
Подробнее
Курсовые на заказ