Минимакс и максимакс

см. также критерии Вальда (минимаксный или максиминный).

Найти минимакс и максимакс (определить нижнюю и верхнюю границы игры).

Решаем через калькулятор. 1. Проверяем, имеет ли платежная матрица седловую точку. Если да, то выписываем решение игры в чистых стратегиях.
Считаем, что игрок I выбирает свою стратегию так, чтобы получить максимальный свой выигрыш, а игрок II выбирает свою стратегию так, чтобы минимизировать выигрыш игрока I.

Игроки B1B2B3B4a = min(Ai)
A15 0 6 8 0
A21 0 5 4 0
A37 9 6 5 5
A46 5 2 1 1
b = max(Bi ) 7 9 6 8 0

Находим гарантированный выигрыш, определяемый нижней ценой игры a = max(ai) = 5, которая указывает на максимальную чистую стратегию A3.
Верхняя цена игры b = min(bj) = 6.
Что свидетельствует об отсутствии седловой точки, так как a ≠ b, тогда цена игры находится в пределах 5 ≤ y ≤ 6. Находим решение игры в смешанных стратегиях. Объясняется это тем, что игроки не могут объявить противнику свои чистые стратегии: им следует скрывать свои действия. Игру можно решить, если позволить игрокам выбирать свои стратегии случайным образом (смешивать чистые стратегии).

2. Проверяем платежную матрицу на доминирующие строки и доминирующие столбцы.
Иногда на основании простого рассмотрения матрицы игры можно сказать, что некоторые чистые стратегии могут войти в оптимальную смешанную стратегию лишь с нулевой вероятностью.
Говорят, что i-я стратегия 1-го игрока доминирует его k-ю стратегию, если aij ≥ akj для всех jЭ N и хотя бы для одного j aij > akj. В этом случае говорят также, что i-я стратегия (или строка) – доминирующая, k-я – доминируемая.
Говорят, что j-я стратегия 2-го игрока доминирует его l-ю стратегию, если для всех j Э M  aij ≤ ail и хотя бы для одного i aij < ail. В этом случае j-ю стратегию (столбец) называют доминирующей, l-ю – доминируемой.
Стратегия A1 доминирует над стратегией A2 (все элемент строки 1 больше или равны значениям 2-ой строки), следовательно исключаем 2-ую строку матрицы.
Стратегия A3 доминирует над стратегией A4 (все элемент строки 3 больше или равны значениям 4-ой строки), следовательно исключаем 4-ую строку матрицы.

5 0 6 8
7 9 6 5
В платежной матрице отсутствуют доминирующие столбцы и доминирующие строки.
Так как игроки выбирают свои чистые стратегии случайным образом, то выигрыш игрока I будет случайной величиной. В этом случае игрок I должен выбрать свои смешанные стратегии так, чтобы получить максимальный средний выигрыш.
Аналогично, игрок II должен выбрать свои смешанные стратегии так, чтобы минимизировать математическое ожидание игрока I.

3. Находим решение игры в смешанных стратегиях.
Запишем систему уравнений.
Для игрока I
5p1+7p2 = y
+9p2 = y
6p1+6p2 = y
8p1+5p2 = y
p1+p2 = 1
Для игрока II
5q1+6q3+8q4 = y
7q1+9q2+6q3+5q4 = y
q1+q2+q3+q4 = 1

Перейти к онлайн решению своей задачи

Открыть диалог Discus Помощь в решении