Критерии для принятия решения

Назначение сервиса. Данный тип задач относится к задачам принятия решений в условиях неопределенности. С помощью сервиса можно выбрать оптимальную стратегию, используя:
  • критерий минимакса, критерий максимакса, критерий Байеса, критерий Вальда, критерий Сэвиджа, критерий Лапласа, критерий Ходжа-Лемана см. Типовые задания;
  • критерий Гурвица, обобщенный критерий Гурвица с расчетом эффективности.
Также проводится планирование идеального эксперимента. Результаты онлайн вычислений оформляются в отчете формата Word (см. пример оформления).
Инструкция. Для выбора оптимальной стратегии в онлайн режиме необходимо задать размерность матрицы. Затем в новом диалоговом окне выбрать необходимые критерии и коэффициенты. Также можно вставить данные из Excel.
Размерность платежной матрицы (целевая функция ЗПР в условиях неопределенности)
x
Примечание: Сначала, если возможно, упрощают матрицу, вычеркивая невыгодные стратегии A. Стратегии природы вычеркивать нельзя, т. к. каждое из состояний природы может наступить случайным образом, независимо от действий A.

Любую хозяйственную деятельность человека можно рассматривать как игру с природой. В широком смысле под "природой" понимается совокупность неопределенных факторов; влияющих на эффективность принимаемых решений. Безразличие природы к игре (выигрышу) к возможность получения экономистом (статистиком) дополнительной информации о ее состоянии отличают игру экономиста с природой от обычной матричной игры, в которой принимают участие два сознательных игрока.

Пример. Предприятие может выпускать 3 вида продукции А1, А2 и А3, получая при этом прибыль, зависящую от спроса, который может быть в одном из 4-х состояний (В1, В2, В3, В4). Элементы платежной матрицы характеризуют прибыль, которую получат при выпуске i-й продукции при j-м состоянии спроса. Игра предприятия А против спроса В задана платежной матрицей:



В1

В2

В3

В4

А1

2

7

8

6

А2

2

8

7

3

А3

4

3

4

2

Определить оптимальные пропорции в выпускаемой продукции, гарантирующие максимизацию средней величины прибыли при любом состоянии спроса, считая его определенным. Задача сводится к игровой модели, в которой.

Решение.
Критерий максимакса.

Ai

П1

П2

П3

П4

max(aij)

A1

2

7

8

6

8

A2

2

8

7

3

8

A3

4

3

4

2

4


Выбираем из (8; 8; 4) максимальный элемент max=8
Вывод: выбираем стратегию N=1.

Критерий Лапласа.

Ai

П1

П2

П3

П4

∑(aij)

A1

0.5

1.75

2

1.5

5.75

A2

0.5

2

1.75

0.75

5

A3

1

0.75

1

0.5

3.25

pj

0.25

0.25

0.25

0.25


Выбираем из (5.75; 5; 3.25) максимальный элемент max=5.75
Вывод: выбираем стратегию N=1.

Критерий Вальда.

Ai

П1

П2

П3

П4

min(aij)

A1

2

7

8

6

2

A2

2

8

7

3

2

A3

4

3

4

2

2


Выбираем из (2; 2; 2) максимальный элемент max=2
Вывод: выбираем стратегию N=1.

Критерий Севиджа.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце bj = max(aij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r11 = 4 - 2 = 2; r21 = 4 - 2 = 2; r31 = 4 - 4 = 0;
2. Рассчитываем 2-й столбец матрицы рисков.
r12 = 8 - 7 = 1; r22 = 8 - 8 = 0; r32 = 8 - 3 = 5;
3. Рассчитываем 3-й столбец матрицы рисков.
r13 = 8 - 8 = 0; r23 = 8 - 7 = 1; r33 = 8 - 4 = 4;
4. Рассчитываем 4-й столбец матрицы рисков.
r14 = 6 - 6 = 0; r24 = 6 - 3 = 3; r34 = 6 - 2 = 4;

Ai

П1

П2

П3

П4

A1

2

1

0

0

A2

2

0

1

3

A3

0

5

4

4


Результаты вычислений оформим в виде таблицы.

Ai

П1

П2

П3

П4

max(aij)

A1

2

1

0

0

2

A2

2

0

1

3

3

A3

0

5

4

4

5


Выбираем из (2; 3; 5) минимальный элемент min=2
Вывод: выбираем стратегию N=1.

Таким образом, в результате решения статистической игры по различным критериям чаще других рекомендовалась стратегия A1.

Открыть диалог Discus Помощь в решении