Решение матричной игры: графическим методом, методом линейного программирования
Решение матричной игры
Цена игры, седловая точка
Примеры решений Метод Брауна Системы массового обслуживания Матрица рисков Седловая точка Платежная матрица Цена игры Смешанные стратегии Матричная игра онлайн Чистые стратегии

Критерии для принятия решения

Назначение сервиса. Данный тип задач относится к задачам принятия решений в условиях неопределенности. С помощью сервиса можно выбрать оптимальную стратегию, используя: Также проводится планирование идеального эксперимента. Результаты онлайн вычислений оформляются в отчете формата Word.
Инструкция. Для выбора оптимальной стратегии в онлайн режиме необходимо задать размерность матрицы. Затем в новом диалоговом окне выбрать необходимые критерии и коэффициенты. Также можно вставить данные из Excel.
Размерность платежной матрицы (целевая функция ЗПР в условиях неопределенности)
x
Примечание: Сначала, если возможно, упрощают матрицу, вычеркивая невыгодные стратегии A. Стратегии природы вычеркивать нельзя, т. к. каждое из состояний природы может наступить случайным образом, независимо от действий A.

Любую хозяйственную деятельность человека можно рассматривать как игру с природой. В широком смысле под "природой" понимается совокупность неопределенных факторов; влияющих на эффективность принимаемых решений. Безразличие природы к игре (выигрышу) к возможность получения экономистом (статистиком) дополнительной информации о ее состоянии отличают игру экономиста с природой от обычной матричной игры, в которой принимают участие два сознательных игрока.

Пример. Предприятие может выпускать 3 вида продукции А1, А2 и А3, получая при этом прибыль, зависящую от спроса, который может быть в одном из 4-х состояний (В1, В2, В3, В4). Элементы платежной матрицы характеризуют прибыль, которую получат при выпуске i-й продукции при j-м состоянии спроса. Игра предприятия А против спроса В задана платежной матрицей:

В1В2В3В4
А12786
А22873
А34342
Определить оптимальные пропорции в выпускаемой продукции, гарантирующие максимизацию средней величины прибыли при любом состоянии спроса, считая его определенным. Задача сводится к игровой модели, в которой.

Решение.
Критерий максимакса.

AiП1П2П3П4max(aij)
A127868
A228738
A343424
Выбираем из (8; 8; 4) максимальный элемент max=8
Вывод: выбираем стратегию N=1.

Критерий Лапласа.

AiП1П2П3П4∑(aij)
A10.51.7521.55.75
A20.521.750.755
A310.7510.53.25
pj0.250.250.250.25
Выбираем из (5.75; 5; 3.25) максимальный элемент max=5.75
Вывод: выбираем стратегию N=1.

Критерий Вальда.

AiП1П2П3П4min(aij)
A127862
A228732
A343422
Выбираем из (2; 2; 2) максимальный элемент max=2
Вывод: выбираем стратегию N=1.

Критерий Севиджа.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце bj = max(aij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r11 = 4 - 2 = 2; r21 = 4 - 2 = 2; r31 = 4 - 4 = 0;
2. Рассчитываем 2-й столбец матрицы рисков.
r12 = 8 - 7 = 1; r22 = 8 - 8 = 0; r32 = 8 - 3 = 5;
3. Рассчитываем 3-й столбец матрицы рисков.
r13 = 8 - 8 = 0; r23 = 8 - 7 = 1; r33 = 8 - 4 = 4;
4. Рассчитываем 4-й столбец матрицы рисков.
r14 = 6 - 6 = 0; r24 = 6 - 3 = 3; r34 = 6 - 2 = 4;

AiП1П2П3П4
A12100
A22013
A30544
Результаты вычислений оформим в виде таблицы.
AiП1П2П3П4max(aij)
A121002
A220133
A305445
Выбираем из (2; 3; 5) минимальный элемент min=2
Вывод: выбираем стратегию N=1.

Таким образом, в результате решения статистической игры по различным критериям чаще других рекомендовалась стратегия A1.

Пример. Предлагается три проекта инвестиций и прогноз получения доходов за год (дивиденды и повышение стоимости капитала) при различных возможных исходах.

Проект инвестиций 1
возможные исходы:
Проект инвестиций 2
возможные исходы:
Проект инвестиций 3
возможные исходы:
123123123
4040 20302030203020
Онлайн-университет
Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа
Программа курсов
Редактор формул онлайн
Удобный редактор формул для Word, Latex и Web.
Редактор формул онлайн
Подробнее
Финансовый анализ онлайн
Анализ и диагностика финансово-хозяйственной деятельности предприятия:
· Оценка имущественного положения
· Анализ ликвидности и платежеспособности
· Анализ финансовой устойчивости
· Анализ рентабельности и оборачиваемости
· Анализ движения денежных средств
· Анализ финансовых результатов и многое другое
Подробнее
Курсовые на заказ