Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Метод Брауна Системы массового обслуживания
Матрица рисков Седловая точка Платежная матрица Цена игры
Смешанные стратегии Матричная игра онлайн Чистые стратегии

Решение игры в смешанных стратегиях геометрическим методом

Пусть игра задана платежной матрицей . По оси абсцисс отложим единичный отрезок А1А2, где точка А1 (0, 0) изображает стратегию А1, А2 (1, 0) – стратегию А2, а каждая промежуточная точка SA этого отрезка изображает смешанную стратегию первого игрока PA = (p1, p2), где p1– расстояние от точки SA до A2, p2–расстояние от точки SA до A1. Выигрыш игрока A будем откладывать на вертикальных отрезках.
Графоаналитический способ решения матричных игр

Случай 1. Если игрок B применит стратегию В1, то выигрыш игрока A при стратегии А1 равен а11, поэтому на оси ординат отложим отрезок А1В1 = а11. При применении игроком A стратегии А2 выигрыш равен а21, отложим этот отрезок на перпендикуляре из точки А2, обозначим полученную точку В1'. Ордината любой точки М1 отрезка В1В1 равна среднему выигрышу игрока A при применении смешанной стратегии SA (действительно, этот выигрыш равен математическому ожиданию случайной величины, т.е. a11p1 + a21p2). Запишем уравнение прямой В1В1:
, т.е. y=a11+x(a21-a11),
тогда при x = p2 получим
y = a11 + p2a21 – p2a11 = a11(1-p2) + p2a21 = a11p1 + a21p2
Случай 2. Если игрок B применяет стратегию В2, то аналогично откладываем отрезки а12 и а22 и получаем отрезок В2В2. Ордината любой точки М2 отрезка В2В2 – выигрыш игрока A, если A применяет смешанную стратегию SA, а B – стратегию В2.
Построим нижнюю границу выигрыша игрока А – ломаную В12. Ординаты точек этой ломаной показывают минимальные выигрыши игрока А при использовании им любой смешанной стратегии. Оптимальное решение игры определяет точка N, в которой выигрыш игрока А принимает наибольшее значение. Ордината точки N равна цене игры. Проекция этой точки на ось ОХ показывает оптимальную стратегию (р1, р2).
Аналогично находится оптимальная стратегия Q = (q1 , q2) игрока B, только в соответствии с принципом минимакса надо находить верхнюю границу выигрыша, т. е. строить ломаную А21 и брать точку N с наименьшей ординатой.
Абсцисса точки N определяет оптимальную стратегию игрока B, т. е. Q = (q1 , q2).

Пример №1. Решить игру, заданную платежной матрицей , графоаналитическим способом.
Решение. Нижняя цена игры α = 1,5, верхняя цена игры β = 2. Так как α≠β, седловой точки нет. Так как a1 = 1,5, a21 = 2  строим точки B1(0;1,5) и B2(1;2), соединяем их отрезком. Так как a21 = 3, a22 = 1 строим точки B2(0;3) и B2’(1;1), соединяем их отрезком.


Уравнение прямой В1В1:
, т. е. y = 0,5x + 1,5;
уравнение В2В2: , т. е.  y = 3-2x.
Найдем точку N пересечения прямых В1В1 и В2В2, для чего решим систему уравнений:
т. е. N(0,6; 1,8), откуда p2= 0,6; p1= 0,4; γ = 1,8 – цена игры.
Аналогично строим точки А1(0; 1,5) и А1(1;3), А2(0; 2) и А2(1; 1) и находим точку M пересечения прямых А1А1 и А2А2.
Решение игры в смешанных стратегиях геометрическим методом

Ответ: смешанная стратегия игрока А: PA= (0,4; 0,6), игрока В: QB = (0,8; 0,2); цена игры 1,8.

Пример №2. Решить матричную игру, в которой один из игроков имеет две чистые стратегии, или игру, которая сводится к таковой после отбрасывания доминируемых строк и столбцов. Для нахождения цены игры и оптимальной стратегии игрока, имеющего две чистые стратегии, применяется графический метод. Для другого игрока оптимальная стратегия ищется исходя из свойств оптимальных стратегий и цены игры. Список рекомендуемых для контрольной работы задач прилагается.

Перейти к онлайн решению своей задачи

Решение игры 2×2

Покажем на примере платёжной матрицы размерностью 2×2 реализацию алгоритма построения оптимального решения игровой задачи в смешанных стратегиях.

Пример №3. Найдем решение матричной игры

V* = -1, V* = 1, V* ≠V* - решения в чистых стратегиях не существует.
Припишем строкам платёжной матрицы неизвестные вероятности p1 и p2 (вероятности выбора стратегий A1 и A2) соответственно:
.
Поскольку p1 + p2 =1 → p2 = 1 - p1. Обозначим p1 = p, тогда p2 =1 - p. В результате получим:

Умножим столбец поэлементно на 1-й столбец и, сложив произведения, получим - математическое ожидание (среднее значение) выигрыша первого игрока A, при условии, что второй игрок B следует первой стратегии.
M1(p) = 1∙p + (-1)(1-p) = 2p-1
Умножим столбец поэлементно на 2-й столбец и, сложив произведения, получим линейную зависимость - математическое ожидание (средний выигрыш) игрока A при применении игроком B второй стратегии
M2(p) = (-1)∙p + 1(1-p) = -2p+1
Поскольку мы разыскиваем оптимальное решение первого игрока A, которое не должно зависеть от выбора стратегий вторым игроком B, приравняем полученные зависимости средних выигрышей:
2p-1 = -2p+1
Отсюда, p= ½, 1-p = ½, то есть оптимальная смешанная стратегия игрока A - это P = (½, ½ ) (каждую из стратегий надо применять с относительной частотой ½). Подставив p=½ в любую из зависимостей Mi(p), i=1,2 найдем цену игры:
V=Mi(½) = 0.
Теперь припишем столбцам вероятности q1 и q2 соответственно, а поскольку:
q1 + q2 =1 →q2 = 1 - q1. Обозначим q1 = q, тогда q2 =1 - q. В результате получим:
.
Умножив строку (q, 1-q) на 1-ю строку и сложив произведения, получим линейную зависимость - математическое ожидание:
W1(q) = 1· q + (-1) ·(1-q) = 2q - 1
Это средний выигрыш игрока A (равный проигрышу игрока B) при применении игроком A 1-й стратегии.
Умножив строку (q, 1-q) на 2-ю строку и сложив произведения, получим линейную зависимость - математическое ожидание:
W2 = (-1) · q + 1· (1-q) = -2q + 1
Это средний выигрыш игрока A (равный проигрышу игрока B) при применении игроком A 2-й стратегии.
Приравняем полученные зависимости:
2q -1 = -2q + 1
Отсюда, q = ½, 1 - q = ½, то есть оптимальная смешанная стратегия игрока B - это Q = (½, ½) (каждую из стратегий надо применять с относительной частотой ½).
Решение о конкретном выборе одной из своих стратегий каждый из игроков может принимать с помощью подбрасывания монеты или бинарного датчика случайных чисел.
Как показывает приведённый пример, оптимальные смешанные стратегии сравнительно легко находятся для игр, имеющих небольшую размерность платёжной матрицы (небольшие m и n), т.е. для игр, в которых каждый из игроков имеет небольшое число стратегий. В то же время для игр, имеющих большую размерность, поиск решения становится достаточно сложным. Поэтому до построения оптимального решения в смешанных стратегиях проводят предварительный анализ платёжной матрицы на предмет её упрощения, исключения из неё дублирующих и доминируемых стратегий, что позволяет существенно упростить поиск решения игровой задачи в смешанных стратегиях.

Решение игр вида 2хn и mх2

Графо-аналитический метод.

У таких игр всегда имеется решение, содержащее не более двух активных стратегий для каждого из игроков. Если найти эти активные стратегии, то игра 2 х n или m х 2 сводится к игре 2 х 2, которую мы уже умеем решать. Поэтому игры 2 х n и m х 2 решают обычно графоаналитическим методом.
Рассмотрим решение матричной игры на примере.

Пример №4. Решение игр вида 2хn и mх2
Решение.

αi
1471
6 3 2 2
βj 6 4 7 2 4

α=2, β=4, α≠β, поэтому игра не имеет седловой точки, и решение должно быть в смешанных стратегиях.
1. Строим графическое изображение игры.
Если игрок B применяет стратегию В1, то выигрыш игрока A при применении стратегии А1 равен а11 = 1, а при использовании А2 выигрыш равен а21 = 6, поэтому откладываем отрезки А1В1 = 1, А2В1 = 6 на перпендикулярах в А1 и А2 и соединяем их отрезком. Аналогично для стратегий В2 и В3 строим отрезки В2 В2 и В3 В3.
2. Выделяем нижнюю границу выигрыша В1М N В3 и находим наибольшую ординату этой нижней границы, ординату точки М, которая равна цене игры γ.
3. Определяем пару стратегий, пересекающихся в точке оптимума М.
В этой точке пересекаются отрезки В2В2 и В1В1, соответствующие стратегиям В1 и В2 игрока B. Следовательно, стратегию В3 ему применять невыгодно. Исключаем из матрицы третий столбец и решаем игру 2 x 2 аналитически:

 ; ; .
Ответ: γ = 7/2; PA = (1/2; 1/2); QB = (1/6; 5/6; 0).

Перейти к онлайн решению своей задачи

Правила решения игры mx2

  1. строится графическое изображение игры;
  2. выделяется нижняя граница выигрыша и находится наибольшая ордината нижней границы, которая равна цене игры γ;
  3. определяется пара стратегий, пересекающихся в точке оптимума M. Эти стратегии являются активными стратегиями игрока B. Если в точке оптимума пересекаются более двух стратегий, то в качестве активных стратегий может быть выбрана любая пара из них;
  4. решается полученная игра 2x2.
Решение игры mx2 осуществляется аналогично. Вместо пункта 2 применяется;
♦ выделяется верхняя граница выигрыша, и на ней находится точка оптимума с наибольшей ординатой.

Пример №5

Решение.

αi
0,4 1,0 0,4
0,5 0,5 0,5
1,0 0,3 0,3
0,8 0,3 0,3
βj 1,0 1,0 0,5 / 1,0
a= 0,5, b= 1,0. Седловой точки нет.
1. строим графическое изображение игры относительно игрока В.
Если А применяет А1, то при использовании игроком В стратегии В1 выигрыш игрока А равен 0,4, а выигрыш А при стратегии В2 равен 1,0, поэтому на перпендикулярах строим такие отрезки. Видно, что стратегия А4 заведомо невыгодная по сравнению со стратегией А3 (выигрыш меньше).
2. Выделяем верхнюю границу выигрыша А31; точка с наименьшей ординатой – N.
3. В этой точке пересекаются отрезки А1А1 и А3А3, соответствующие активным стратегиям А1 и А3. Стратегия А2 не является активной, поэтому из матрицы исключаем вторую и четвертую строки: .

4. решаем игру:

13p3 = 6; p3  =6/13; p1 = 7/13
Правила решения игры 2xn
q2 = 6/13.
Ответ: γ = 44/65; PA = (7/13; 0; 6/13; 0); QB = (7/13; 6/13).

Примечание: Игроку А не выгодно отклоняться от спектра своих активных стратегий.

Перейти к онлайн решению своей задачи

Другие примеры

Найти процентное соотношение вариантов сбыта продукции, обеспечивающее среднюю величину прибыли при любом состоянии спроса.