Примеры решения по теории массового обслуживания
- СМО с ожиданием (очередью)
- СМО с отказами
- Параметры СМО. На торговой точке предполагается одновременно использование только одного продавца. Известно, что в дневное время интенсивность прихода покупателей составляет 4 + 0,2N1-0,1N2 человек в час. Продавец может обслуживать в час в среднем 5-0,5N1+0,2N2 покупателей.
- Абсолютная пропускная способность. Пример решения
- Доля времени простоя каналов
- Интенсивность нагрузки
- Вероятность обслуживания поступающих заявок
- Коэффициент занятости каналов обслуживанием
- Среднее время ожидания обслуживания заявки в очереди
- Среднее число обслуживаемых заявок
- Среднее время пребывания заявки в СМО
Примеры задач
Задача №2.Рассматривается работа автозаправочной станции (АЗС), на которой имеется 2 заправочные колонки. Предположим, что она описывается процессом размножения и гибели в стационарном режиме. Заправка каждой машины длится в среднем 3 минуты. В среднем на АЗС каждые две минуты прибывает машина, нуждающаяся в заправке. Число мест в очереди неограниченно. Все машины, вставшие на заправку, терпеливо дожидаются своей очереди.
Определить:
1. Вероятность того, что на заправке находится 5 машин.
2. Вероятность того, что вновь прибывшей машине придется ждать обслуживания.
Скачать решение
Задача №3.
На входе СМО с одним обслуживающим прибором простейший поток требований с параметром λ=1.2. Время обслуживания распределено равномерно на интервале (0, 1). Определить среднюю длину очереди, среднее время ожидания, среднее время обслуживания, среднее время пребывания требования в системе и среднее число требований в системе.
Задача №4.
Построить две модели многоканальной системы массового обслуживания – с бесконечной и ограниченной очередью. Вычислить Р0– вероятность простаивания всех каналов обслуживания, nw– среднее число клиентов, ожидающих обслуживания, tw– среднее время ожидания обслуживания, W – вероятность обязательного пребывания в очереди.
l | m | s | k |
8 | 10 | 2 | 4 |
Модель многоканальной системы массового обслуживания с бесконечной очередью: Скачать решение
Модель многоканальной системы массового обслуживания с ограниченной очередью: Скачать решение
Задача №1.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0.6, а корабль B поражает корабль A с вероятностью 0.75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.