Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Дискриминант Интегралы онлайн Пределы онлайн
Производная онлайн Ряд Тейлора Решение уравнений
Метод матриц Обратная матрица Умножение матриц

Условие коллинеарности двух векторов

Условие коллинеарности двух векторов a=(x1;y1) и b=(x2;y2) имеет вид:
x1 = m•x2; y1 = m•y2
т.е. если соответствующие координаты двух векторов пропорциональны, то векторы коллинеарны.
Если m>0, то векторы a и b имеют одинаковое направление; если m<0, то направление векторов противоположны.

Задание №1
Проверить, коллинеарны ли векторы a и b:

a(;)
b(;)


Задание №2
Проверить, коллинеарны ли векторы AB и CD; если да, то сонаправлены ли они. Векторы соответственно заданы точками:

A(;)
B(;)
C(;)
D(;)


Пример №1. Проверить, коллинеарны ли векторы AB и CD; если да, то сонаправлены ли они. A(1;1), B(7;3), C(-4;-5), D(5;-2).

Решение.
Находим координаты векторов:
AB = (6;2)
CD = (9;3)
Используя условие коллинеарности векторов, устанавливаем, что координаты этих векторов пропорциональны:

m = 6 / 9 = 2 / 3
m>0: следовательно, векторы коллинеарны и сонаправлены.

Пример №2. Проверить условие коллинеарности векторов a и b. a(-6;3), b(8;-4).

Решение.
Используя условие коллинеарности векторов, устанавливаем, что координаты этих векторов пропорциональны:

m = -6 / 8 = 3 / -4
m<0: следовательно, векторы коллинеарны и противоположно направлены.

Пример №3. Проверить, коллинеарны ли векторы AB и CD; если да, то сонаправлены ли они.
A(2;1), B(6;5), C(3;-1), D(7;-2).

Решение.
Находим координаты векторов:
AB = (4;4)
CD = (4;-1)
Используя условие коллинеарности векторов, устанавливаем, что координаты этих векторов не пропорциональны:

4 / 4 ≠ 4 / -1
Следовательно, векторы не коллинеарны.