Примеры решений Дискриминант Интегралы онлайн Пределы онлайн Производная онлайн Ряд Тейлора Решение уравнений Метод матриц Обратная матрица Умножение матриц

Уравнение параллельной прямой

Прямая, проходящая через точку K(x0; y0) и параллельная прямой y = kx + a находится по формуле:
y - y0 = k(x - x0) (1)
где k - угловой коэффициент прямой.

Альтернативная формула:
Прямая, проходящая через точку M1(x1; y1) и параллельная прямой Ax+By+C=0, представляется уравнением

A(x-x1)+B(y-y1)=0. (2)

назначение сервиса. Онлайн-калькулятор предназначен для составления уравнения параллельной прямой (см. также как составить уравнение перпендикулярной прямой).

Составить уравнение прямой, проходящей через точку K(;) параллельно прямой y = ·x + .
Пример №1. Составить уравнение прямой, проходящей через точку M0(-2,1) и при этом:
а) параллельно прямой 2x+3y -7 = 0;
б) перпендикулярно прямой 2x+3y -7 = 0.
Решение. Представим уравнение с угловым коэффициентом в виде y = kx + a. Для этого перенесем все значения кроме y в правую часть: 3y = -2x + 7. Затем разделим правую часть на коэффициент 3. Получим: y = -2/3x + 7/3
Найдем уравнение NK, проходящее через точку K(-2;1), параллельно прямой y = -2/3x + 7/3
Подставляя x0 = -2, k = -2/3, y0 = 1 получим:
y-1 = -2/3(x-(-2))
или
y = -2/3x - 1/3 или 3y + 2x +1 = 0

Пример №2. Написать уравнение прямой, параллельной прямой 2x + 5y = 0 и образующей вместе с осями координат треугольник, площадь которого равна 5.
Решение. Так как прямые параллельны, то уравнение искомой прямой 2x + 5y + C = 0. Площадь прямоугольного треугольника , где a и b его катеты. Найдем точки пересечения искомой прямой с осями координат:
;
.
Итак, A(-C/2,0), B(0,-C/5). Подставим в формулу для площади: . Получаем два решения: 2x + 5y + 10 = 0 и 2x + 5y – 10 = 0.

Пример №3. Составить уравнение прямой, проходящей через точку (-2; 5) и параллельной прямой 5x-7y-4=0.
Решение. Данную прямую можно представить уравнением y = 5/7x – 4/7 (здесь a = 5/7). Уравнение искомой прямой есть y – 5 = 5/7(x – (-2)), т.е. 7(y-5)=5(x+2) или 5x-7y+45=0.

Пример №4. Решив пример 3 (A=5, B=-7) по формуле (2), найдем 5(x+2)-7(y-5)=0.

Пример №5. Составить уравнение прямой, проходящей через точку (-2;5) и параллельной прямой 7x+10=0.
Решение. Здесь A=7, B=0. Формула (2) дает 7(x+2)=0, т.е. x+2=0. Формула (1) неприменима, так как данное уравнение нельзя разрешить относительно y (данная прямая параллельна оси ординат).

График функции
Построение графика функции методом дифференциального исчисленияПостроение графика функции методом дифференциального исчисления
Решить онлайн
Матрицы
Действия над матрицами: умножение, сложение, вычитание
Действия над матрицами
Решить онлайн
Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Курсовые на заказ