Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Уравнение касательной к кривой. Подробный пример

Задание №1. Написать уравнения касательной и нормали к кривой x3 в точке M0 с абсциссой x0 = 2.
Решение находим с помощью калькулятора.
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 2, тогда y0 = 23 = 8
Теперь найдем производную:
y' = (x3)' = 3•x2
следовательно:
f'(2) = 3•22 = 12
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = 8 + 12(x - 2)
или
yk = 12•x-16
Запишем уравнения нормали в общем виде:

В результате имеем:

или
yk = -1/12•x+49/6

Задание №2. Написать уравнения касательной и нормали к кривой 1/3•x3-4•x+1 в точке M0 с абсциссой x0 = 3.
Решение.
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 3, тогда y0 = -2
Теперь найдем производную:
y' = (1/3•x3-4•x+1)' = x2-4
следовательно:
f'(3) = 32-4 = 5
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = -2 + 5(x - 3)
или
yk = 5•x-17
Запишем уравнения нормали в общем виде:

В результате имеем:

или
yk = -1/5•x-7/5

Пример №3. Составьте уравнение касательной к кривой y=4-x2 в точке с абсциссой x=1.
Решение. Запишем уравнения касательной в общем виде: yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 1, тогда y0 = 3. Теперь найдем производную: y' = (4-x2)' = -2x. следовательно: f'(1) = -2•1 = -2. В результате получаем уравнение касательной: yk = 3 -2(x - 1) или yk = 5-2x

Перейти к онлайн решению

ЕГЭ по математике
Yandex.Просвещение представляет бесплатные видеокурсы по ЕГЭ с возможностью прохождения тестов
Подробнее
Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Курсовые на заказ