Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса
Найти производную Найти интеграл Решение СЛАУ методом Крамера
Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Уравнение касательной к кривой. Подробный пример

Задание №1. Написать уравнения касательной и нормали к кривой x3 в точке M0 с абсциссой x0 = 2.
Решение находим с помощью калькулятора.
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 2, тогда y0 = 23 = 8
Теперь найдем производную:
y' = (x3)' = 3•x2
следовательно:
f'(2) = 3•22 = 12
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = 8 + 12(x - 2)
или
yk = 12•x-16
Запишем уравнения нормали в общем виде:

В результате имеем:

или
yk = -1/12•x+49/6

Задание №2. Написать уравнения касательной и нормали к кривой 1/3•x3-4•x+1 в точке M0 с абсциссой x0 = 3.
Решение.
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 3, тогда y0 = -2
Теперь найдем производную:
y' = (1/3•x3-4•x+1)' = x2-4
следовательно:
f'(3) = 32-4 = 5
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = -2 + 5(x - 3)
или
yk = 5•x-17
Запишем уравнения нормали в общем виде:

В результате имеем:

или
yk = -1/5•x-7/5

Пример №3. Составьте уравнение касательной к кривой y=4-x2 в точке с абсциссой x=1.
Решение. Запишем уравнения касательной в общем виде: yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 1, тогда y0 = 3. Теперь найдем производную: y' = (4-x2)' = -2x. следовательно: f'(1) = -2•1 = -2. В результате получаем уравнение касательной: yk = 3 -2(x - 1) или yk = 5-2x

Перейти к онлайн решению своей задачи