Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Уравнение касательной к кривой. Подробный пример

Задание №1. Написать уравнения касательной и нормали к кривой x3 в точке M0 с абсциссой x0 = 2.
Решение находим с помощью калькулятора.
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 2, тогда y0 = 23 = 8
Теперь найдем производную:
y' = (x3)' = 3•x2
следовательно:
f'(2) = 3•22 = 12
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = 8 + 12(x - 2)
или
yk = 12•x-16
Запишем уравнения нормали в общем виде:

В результате имеем:

или
yk = -1/12•x+49/6

Задание №2. Написать уравнения касательной и нормали к кривой 1/3•x3-4•x+1 в точке M0 с абсциссой x0 = 3.
Решение.
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 3, тогда y0 = -2
Теперь найдем производную:
y' = (1/3•x3-4•x+1)' = x2-4
следовательно:
f'(3) = 32-4 = 5
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = -2 + 5(x - 3)
или
yk = 5•x-17
Запишем уравнения нормали в общем виде:

В результате имеем:

или
yk = -1/5•x-7/5

Пример №3. Составьте уравнение касательной к кривой y=4-x2 в точке с абсциссой x=1.
Решение. Запишем уравнения касательной в общем виде: yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 1, тогда y0 = 3. Теперь найдем производную: y' = (4-x2)' = -2x. следовательно: f'(1) = -2•1 = -2. В результате получаем уравнение касательной: yk = 3 -2(x - 1) или yk = 5-2x

Перейти к онлайн решению

Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Онлайн-университет
Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа
Программа курсов
Редактор формул онлайн
Удобный редактор формул для Word, Latex и Web.
Редактор формул онлайн
Подробнее
Курсовые на заказ