Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Интеграл как функция верхнего предела. Формула Ньютона-Лейбница

Рассмотрим функцию . Эту функцию называют: интеграл как функция верхнего предела. Отметим несколько свойств этой функции.
Теорема 2.1. Если f(x) интегрируемая на [a,b] функция, то Ф(x) непрерывна на [a,b].
Доказательство. По свойству 9 определенного интеграла (теорема о среднем) имеем , откуда, при , получаем требуемое.
Теорема 2.2. Если f(x) непрерывная на [a,b] функция, то Ф’(x) = f(x) на [a,b].
Доказательство. По свойству 10 определенного интеграла (вторая теорема о среднем), имеем где с – некоторая точка отрезка [x,x+h]. В силу непрерывности функции f получаем
.

Таким образом, Ф(x) - одна из первообразных функции f(x) следовательно, Ф(x) = F(x) + C, где F(x) - другая первообразная f(x). Далее, так как Ф(a) = 0, то 0 = F(a) + C, следовательно, C = -F(a) и поэтому Ф(x) = F(x) – F(a). Полагая x=b, получаем формулу Ньютона-Лейбница

Примеры
1.

Интегрирование по частям в определённом интеграле

В определенном интеграле сохраняется формула интегрирования по частям. В этом случае она приобретает вид

Пример.

Замена переменных в определённом интеграле

Один из вариантов результатов о замене переменных в определённом интеграле следующий.
Теорема 2.3. Пусть f(x)- непрерывна на отрезке [a,b] и удовлетворяет условиям:
1) φ(α) = a
2) φ(β) = b
3) производная φ’(t) определена всюду на отрезке [α, β]
4) для всех t из [α, β]
Тогда
Доказательство. Если F(x) первообразная для f(x)dx то F(φ(t)) первообразная для Поэтому F(b) – F(a) = F(φ(β)) – F(φ(α)). Теорема доказана.
Замечание. При отказе от непрерывности функции f(x) в условиях теоремы 2.3 приходится требовать монотонности функции φ(t).

Пример. Вычислить интеграл Положим Тогда dx = 2tdt и поэтому


Также рекомендуется ознакомиться с возможностью решения интегралов онлайн.

Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Онлайн-университет
Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа
Программа курсов
Курсовые на заказ