Нелинейное программирование
Метод Лагранжа
Метод множителей Лагранжа
Решить онлайн
Примеры решений Метод Зейделя Метод Ньютона Метод хорд Решение уравнений Метод LU-разложения Метод Гаусса Матрица Гессе Градиент функции Экстремум функции

Метод непосредственной линеаризации

Назначение сервиса. Онлайн-калькулятор используется для нахождения минимума функции двух переменных методом непосредственной линеаризации.
Количество нелинейных ограничений, {gi(x), hi(x)}
Количество линейных ограничений

Правила ввода функций:
  1. Все переменные выражаются через x1,x2
  2. Все математические операции выражаются через общепринятые символы (+,-,*,/,^). Например, x12+x1x2, записываем как x1^2+x1*x2.

Все рассматриваемые ниже методы основываются на разложении нелинейной функции общего вида f(x) в ряд Тейлора до членов первого порядка в окрестности некоторой точки x0:

где – отбрасываемый член второго порядка малости.
Таким образом, функция f(x) аппроксимируется в точке x0 линейной функцией:
,
где x0 – точка линеаризации.
Замечание. Линеаризацию следует использовать с большой осторожностью, поскольку иногда она дает весьма грубое приближение.

Общая задача нелинейного программирования

Рассмотрим общую задачу нелинейного программирования:

Пусть xt – некоторая заданная оценка решения. Использование непосредственной линеаризации приводит к следующей задаче:

Эта задача представляет собой ЗЛП. Решая ее, находим новое приближение xt+1, которое может и не принадлежать допустимой области решений S.
Если , то оптимальное значение линеаризованной целевой функции, удовлетворяющее неравенству:

может не быть точной оценкой истинного значения оптимума.
Для сходимости к экстремуму достаточно, чтобы для последовательности точек { xt}, полученных в результате решения последовательности подзадач ЛП, выполнялось следующее условие:
значение целевой функции и невязки по ограничениям в точке xt+1 должно быть меньше их значений в точке xt.

Пример №1.

Построим допустимую область S (см. рис.).


Допустимая область S состоит из точек кривой h(x)=0, лежащей между точкой (2;0), определяемой ограничением x2≥0, и точкой (1;1), определяемой ограничением g(x) ≥0.
В результате линеаризации задачи в точке x0=(2;1) получаем следующую ЗЛП:

Здесь представляет собой отрезок прямой , ограниченный точками (2.5; 0.25) и (11/9; 8/9). Линии уровня линеаризованной целевой функции представляют собой прямые с наклоном -2, тогда как линии уровня исходной целевой функции – окружности с центром в точке (0;0). Ясно, что решением линеаризованной задачи является точка x1=(11/9; 8/9). В этой точке имеем:

так что ограничение–равенство нарушается. Произведя новую линеаризацию в точке x1, получаем новую задачу:
Новое решение лежит на пересечении прямых и и имеет координаты x2=(1.0187; 0.9965). Ограничение– равенство ( ) все еще нарушается, но уже в меньшей степени. Если произвести еще две итерации, то получим очень хорошее приближение к решению x*=(1;1), f(x*)=2

Таблицa - Значения целевой функции для некоторых итераций:

Итерация f g h
0 5 3 –1
1 2,284 0,605 –0,0123
3 2,00015 3,44×10-4 –1,18×10-5
Оптимум 2 0 0

Из таблицы видно, что значения f,g и h монотонно улучшаются. Однако такая монотонность характерна для задач, функции которых являются "умеренно" нелинейными. В случае функций с ярко выраженной нелинейностью монотонность улучшения нарушается и алгоритм перестает сходиться.
Существует три способа усовершенствования методов непосредственной линеаризации:
1. Использование линейного приближения для отыскания направления спуска.
2. Глобальная аппроксимация нелинейной функции задачи при помощи кусочно–линейчатой функции .
3. Применение последовательных линеаризаций на каждой итерации для уточнения допустимой области S.
Собственные числа
Найти собственные числа и собственные векторы матрицы
Составляем характеристическое уравнение.
|17-λ 6|
|6   8-λ|
λ2-25λ+100=0
Решить онлайн
Векторное произведение
abc
Решить онлайн
Уравнение прямой
Уравнение прямой по координатам точек A(x;y)
AB
Решить онлайн
Курсовые на заказ