Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Примеры решений Ранг матрицы Эллипс Умножение матриц
Определитель матрицы Метод обратной матрицы Обратная матрица
Метод Гаусса онлайн Привести к каноническому вид

Собственные числа матрицы линейного оператора

Собственный вектор оператора A - ненулевой вектор X, переводящий X в коллинеарный ему вектор, то есть AX = λX. где λ - собственное значение или собственное число оператора A.

Назначение сервиса. Калькулятор предназначен для нахождения в онлайн режиме собственных чисел и собственных векторов матрицы. (см. пример решения)

Инструкция. Выберите размерность матрицы. Полученное решение сохраняется в файле Word.
Количество переменных
Пример. Исходная матрица имеет вид:

Составляем систему для определения координат собственных векторов:
(17 - λ)x1 + 6x2 = 0
6x1 + (8 - λ)x2 = 0
Составляем характеристическое уравнение и решаем его:

λ2 -25 λ + 100 = 0
D = (-25)2 - 4 • 1 • 100 = 225


-3x1 + 6y1 = 0
6x1-12y1 = 0
или
-3x1 + 6y1 = 0
Собственный вектор, отвечающий числу λ1 = 20 при x1 = 2: x1 = (2,1)
В качестве единичного собственного вектора принимаем вектор:

где - длина вектора x1.
Координаты второго собственного вектора, соответствующего второму собственному числу λ2 = 5, находим из системы:
12x1 + 6y1 = 0
6x1 + 3y1 = 0
или
12x1 + 6y1 = 0

Другие примеры