Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Угол между градиентами скалярных полей

Найти угол между градиентами скалярных полей u(x;y;z) и v(x;y;z) в точке М.
U(x3+y3+z3), V=x2-y2+z2, M(1;-1;1).
Решение находим с помощью этого калькулятора.
а) Вычислим градиент скалярного поля U(x3+y3+z3) в точке M(1;-1;1). Для этого найдем частные производные и вычислим их значения в точке M(1;-1;1).
; ; .
, , .
Следовательно, grad U=(3;3;3).
б) Вычислим градиент скалярного поля V=x2-y2+z2 в точке M(1;-1;1). Найдем частные производные и вычислим их значения в точке M(1;-1;1).
; ; .
, , .

Значит, grad V=(2;2;2).
в) Так как градиент – это вектор, то угол между градиентами скалярных полей найдем по формуле: , т.е. .
Обозначим через φ искомый угол. Тогда .
Следовательно, φ=1.

Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Курсовые на заказ