Эллипс
d1d2A2A1B1B2F2F1
Как построить эллипс. Каноническое уравнение эллипса
Решить онлайн
Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Объем фигуры, образованной в результате вращения вокруг оси

Объем фигуры, образованной в результате вращения вокруг оси Ox криволинейной трапеции, ограниченной непрерывной кривой y = f(x) (a ≤ x ≤ b), Осью Ox и прямыми x= a и x = b, вычисляется по формуле:


Аналогично, объем фигуры, образованной в результате вращения вокруг оси Oy криволинейной трапеции, ограниченной непрерывной кривой y = φ(x) (c ≤ x ≤ d), Осью Ox и прямыми y= c и y = d, находится по формуле:

Пример №1. Вычислить объемы фигур, образованных вращением площадей, ограниченных указанными линиями.
y2 = 4x; y = 0; x = 4.


Пределы интегрирования a = 0, b = 4.

Пример №2. y2 = 4x; y = x


Выполним построение фигуры. Решим систему:
y2 = 4x
y = x
найдем точки пересечения параболы и прямой: O(0;0), A(4;4).
Следовательно, пределы интегрирования a = 0; b = 4. Искомый объем представляет собой разность объема V1 параболоида, образованного вращением кривой y2 = 4x , и о объема V2 конуса, образованного вращением прямой y = x:


V = V1 – V2 = 32π – 64/3 π = 32/3 π

см. также как вычислить интеграл онлайн

Пример №3. Вычислить объем тела, полученного вращением вокруг оси Оx фигуры, ограниченной прямой y=x и параболой .
Найдем точки пересечения линий. Для этого решим уравнение . Получим x1=0, x2=1.

Рис. 2. Объем тела вращения.
Объем тела может быть вычислен по формуле , где
, f2(x)=x.

Ответ: .

см. также Площадь фигуры, ограниченной линиями: Площадь фигуры, ограниченной линиями

Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Учебно-методический
√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия
Подробнее
Библиотека материалов
√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ
Подробнее
Курсовые на заказ