Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Создание схемы логических элементов
Примеры решений Ранг матрицы Метод Крамера Обратная матрица
Определитель матрицы Умножение матриц Алгебраические дополнения
Скалярное произведение Метод обратной матрицы Матричные уравнения

Пример нахождения обратной матрицы

Определение. Если A – квадратная матрица, то обратной для нее матрицей называется матрица, обозначаемая A-1 и удовлетворяющая условиям A·A-1=E, A-1·A=E, где E – единичная матрица.
Из этого определения следует, что если матрица A-1 является обратной для A, то и A будет обратной для A-1. Обратную матрицу имеет только квадратная матрица, определитель которой отличен от нуля. Такие матрицы называются невырожденными.

Рассмотрим на примерах практическое применение обратной матрицы.

Пример №1. В задачах дана невырожденная матрица A. Найти обратную матрицу A-1 и пользуясь правилом умножения матриц, показать, что A*A-1 = E, где E – единичная матрица.

Решение находим через калькулятор.
Находим определитель матрицы A.
Минор для (1,1):
= 1∙(1∙1-0∙2)-0∙(2∙1-0∙(-3))+0∙(2∙2-1∙(-3))= 1
Минор для (2,1):
= 3∙(1∙1-0∙2)-0∙(-5∙1-0∙7)+0∙(-5∙2-1∙7) = 3
Минор для (3,1):
 = 3∙(2∙1-0∙(-3))-1∙(-5∙1-0∙7)+0∙(-5∙(-3)-2∙7)= 11
Минор для (4,1):
 = 3∙(2∙2-1∙(-3))-1∙(-5∙2-1∙7)+0∙(-5∙(-3)-2∙7)= 38
Определитель равен: ∆ = 1∙1-0∙3+0∙11-0∙38 = 1, следовательно, матрица является невырожденной и можно искать обратную матрицу.

Транспонированная матрица

Найдем алгебраические дополнения:

1,1 = 1∙(1∙1-2∙0)-2∙(0∙1-2∙0)+(-3∙(0∙0-1∙0))= 1

1,2 = -3∙(1∙1-2∙0)-(-5∙(0∙1-2∙0))+7∙(0∙0-1∙0)= -3

1,3 = 3∙(2∙1-(-3∙0))-(-5∙(1∙1-(-3∙0)))+7∙(1∙0-2∙0)= 11

1,4 = -3∙(2∙2-(-3∙1))-(-5∙(1∙2-(-3∙0)))+7∙(1∙1-2∙0)= -38

2,1 = -0∙(1∙1-2∙0)-2∙(0∙1-2∙0)+(-3∙(0∙0-1∙0))= 0

2,2 = 1∙(1∙1-2∙0)-(-5∙(0∙1-2∙0))+7∙(0∙0-1∙0)= 1

2,3 = -1∙(2∙1-(-3∙0))-(-5∙(0∙1-(-3∙0)))+7∙(0∙0-2∙0)= -2

2,4 = 1∙(2∙2-(-3∙1))-(-5∙(0∙2-(-3∙0)))+7∙(0∙1-2∙0)= 7

3,1 = 0∙(0∙1-2∙0)-1∙(0∙1-2∙0)+(-3∙(0∙0-0∙0))= 0

3,2 = -1∙(0∙1-2∙0)-3∙(0∙1-2∙0)+7∙(0∙0-0∙0)= 0

3,3 = 1∙(1∙1-(-3∙0))-3∙(0∙1-(-3∙0))+7∙(0∙0-1∙0)= 1

3,4 = -1∙(1∙2-(-3∙0))-3∙(0∙2-(-3∙0))+7∙(0∙0-1∙0)= -2

4,1 = -0∙(0∙0-1∙0)-1∙(0∙0-1∙0)+2∙(0∙0-0∙0)= 0

4,2 = 1∙(0∙0-1∙0)-3∙(0∙0-1∙0)+(-5∙(0∙0-0∙0))= 0

4,3 = -1∙(1∙0-2∙0)-3∙(0∙0-2∙0)+(-5∙(0∙0-1∙0))= 0

4,4 = 1∙(1∙1-2∙0)-3∙(0∙1-2∙0)+(-5∙(0∙0-1∙0))= 1
Обратная матрица


Пример 2:xls

Пример №2. Обратная матрица используется при нахождении величины валовой продукции отрасли Xi: X = (E - A)-1Y при построении межотраслевой баланса.

Пример №3. Использование операции с обратной матрицей в двойственной задаче линейного программирования позволяет определить двойственные оценки.