Определитель матрицы
Найти определитель матрицы
Решить онлайн
Примеры решений Ранг матрицы Метод Крамера Умножение матриц Определитель матрицы Метод обратной матрицы Обратная матрица Метод Гаусса онлайн LU разложение матрицы Производная онлайн

Как найти нетривиальное и фундаментальное решение системы линейных однородных уравнений

Пример 1. Найти общее решение и какую-нибудь фундаментальную систему решений для системы
Решение находим с помощью калькулятора. Алгоритм решения такой же, как и для систем линейных неоднородных уравнений.
Оперируя только со строками, находим ранг матрицы, базисный минор; объявляем зависимые и свободные неизвестные и находим общее решение.

Первая и вторая строки пропорциональны, одну из них вычеркнем:

Зависимые переменные – x2, x3, x5, свободные – x1, x4. Из первого уравнения 10x5 = 0 находим x5 = 0, тогда
2x3=-x5-x4 → x3=-x4/2.
-x2=-3x1-4x3-x5-4x4 → -x2=-3x1+2x4-4x4; x2=3x1+2x4
Общее решение имеет вид:

Находим фундаментальную систему решений, которая состоит из (n-r) решений. В нашем случае n=5, r=3, следовательно, фундаментальная система решений состоит из двух решений, причем эти решения должны быть линейно независимыми. Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 2. Достаточно придать свободным неизвестным x1 и x4 значения из строк определителя второго порядка, отличного от нуля, и подсчитать x2, x3, x5. Простейшим определителем, отличным от нуля, является .
Таким образом, первое решение: , второе – .
Эти два решения составляют фундаментальную систему решений. Заметим, что фундаментальная система не единственна (определителей, отличных от нуля, можно составить сколько угодно).

Пример 2. Найти общее решение и фундаментальную систему решений системы
Решение.



,
отсюда следует, что ранг матрицы равен 3 и равен числу неизвестных. Значит, система не имеет свободных неизвестных, а поэтому имеет единственное решение – тривиальное.

Задание. Исследовать и решить систему линейных уравнений.
Пример 4

Задание. Найти общее и частное решения каждой системы.
Решение. Выпишем основную матрицу системы:

5 -2 9 -4 -1
1 4 2 2 -5
6 2 11 -2 -6
x1 x2 x3 x4 x5

Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 2-ую строку на (-5). Добавим 2-ую строку к 1-ой:
0 -22 -1 -14 24
1 4 2 2 -5
6 2 11 -2 -6

Умножим 2-ую строку на (6). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:
0 -22 -1 -14 24
0 22 1 14 -24
6 2 11 -2 -6

В матрице B 1-ая и 2-ая строки пропорциональны, следовательно, одну из них, например 1-ю, можно вычеркнуть. Это равносильно вычеркиванию 1-го уравнения системы, так как оно является следствием 2-го.
022114-24
6211-2-6

Найдем ранг матрицы.
0 22 1 14 -24
6 2 11 -2 -6
x1 x2 x3 x4 x5

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 2.
Этот минор является базисным. В него вошли коэффициенты при неизвестных x1,x2, значит, неизвестные x1,x2 – зависимые (базисные), а x3,x4,x5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.
0 22 14 -1 -24
6 2 -2 -11 -6
x1 x2 x4 x3 x5

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
22x2 = 14x4 - x3 - 24x5
6x1 + 2x2 = - 2x4 - 11x3 - 6x5
Методом исключения неизвестных находим нетривиальное решение:
Получили соотношения, выражающие зависимые переменные x1,x2 через свободные x3,x4,x5, то есть нашли общее решение:
x2 = 0.64x4 - 0.0455x3 - 1.09x5
x1 = - 0.55x4 - 1.82x3 - 0.64x5
Находим фундаментальную систему решений, которая состоит из (n-r) решений.
В нашем случае n=5, r=2, следовательно, фундаментальная система решений состоит из 3-х решений, причем эти решения должны быть линейно независимыми.
Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 3.
Достаточно придать свободным неизвестным x3,x4,x5 значения из строк определителя 3-го порядка, отличного от нуля, и подсчитать x1,x2.
Простейшим определителем, отличным от нуля, является единичная матрица.
100
010
001

Задача. Найти фундаментальный набор решений однородной системы линейных уравнений. Решение

Задача. Найти общее решение системы. Проанализировать его структуру (указать базис пространства решений однородной системы, установить размерность пространства). Решение


Пример 3
Пример 4
График функции
Построение графика функции методом дифференциального исчисленияПостроение графика функции методом дифференциального исчисления
Решить онлайн
Матрицы
Действия над матрицами: умножение, сложение, вычитание
Действия над матрицами
Решить онлайн
Векторное произведение
abc
Решить онлайн
Курсовые на заказ