Примеры решений Ранг матрицы Умножение матриц Метод Гаусса Найти производную Найти интеграл Решение СЛАУ методом Крамера Диф уравнения онлайн Определитель матрицы Точки разрыва функции

Как найти градиент

Пример №1. Даны функция u = f(x,y,z); точка A(x0;y0) и вектор a(a1;a2).
Найти:
а) grad u  в точке А.
б) Производную в точке А по направлению вектора а
u = x2 + 2xy + y2 + z2
A(1;1;1)
a(2;-1;0)

Решение находим с помощью калькулятора.
Градиент grad u
Градиент
Градиент: формула


Как найти производную

grad u в точке А
grad u(A) = (2·1+2·1)i + (2·1+2·1)j + 2·1·k = 4i+4j+2k
Модуль grad u
Модуль градиента
Модуль градиента: формула
Вектор  а(2;-1;0)
Направляющие углы

Модуль вектора |a|.



Производная в точке А по направлению вектора а.
Производная в точке А по направлению вектора а

Пример №2. Найти grad u в точке М(0,0,0), если u=х*sin(z)-y*cos(z).
Найти производную функции u=х*y2+z3-x*y*z в точке М(1,1,2) в направлении, образующем с осями координат углы соответственно в 60о, 45о, 60о.

Пример №3. Даны функция z = f(x,y), точка A и вектор a. Найти: 1) наибольшую скорость возрастания функции в точке A; 2) скорость изменения функции в точке A по направлению вектора a.
z = ln(x2 + 3y2), A(1,1), a(3,2).
Примечание: наибольшая скорость возрастания функции в указанной точке равна модулю градиента функции в этой точке.
Скачать решение

Задача 1. Найти проекции grad z в точке М(1,2), где z=ln(4x2-y).

Задача 2. Найти производную функции z=х3-3x2y +3xy2+1 в точке М(3,1) в направлении, идущем от этой точки к точке N(6,5).

Задача 3. Даны функция z = f(x,y), точка A(x0,y0) и вектор a(a1,a2). Найти:
1) grad z в точке A;
2) производную в точке A по направлению вектора a.
Решение.
z = ln(5x2+3y2), A(1;1), a(3;2)
Скачать решение

см. также Производная функции в точке в направлении вектора

Упростить логическое выражение
Решение по шагам
(a→c)→ba
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B
Решение онлайн
Редактор формул онлайн
Удобный редактор формул для Word, Latex и Web.
Редактор формул онлайн
Подробнее