Построить график функции Точки разрыва функции Построение графика методом дифференциального исчисления Упростить выражение
Примеры решений Дискриминант Интегралы онлайн Пределы онлайн
Производная онлайн Ряд Тейлора Решение уравнений
Метод матриц Обратная матрица Умножение матриц

Объем тетраэдра

Пример №1. Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Решение находим с помощью калькулятора.
Найти объем треугольной пирамиды ABCD с вершинами A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3).
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
здесь X,Y,Z координаты вектора; xi, yi, zi - координаты точки Аi; xj, yj, zj - координаты точки Аj;
Например, для вектора AB
X = x2 - x1; Y = y2 - y1; Z = z2 - z1
X = 5-2; Y = 5-(-1); Z = 4-1
AB(3;6;3), AC(1;3;-2), AD(2;2;2), BC(-2;-3;-5), BD(-1;-4;-1), CD(1;-1;4).
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:


Находим определитель матрицы: ∆ = 3 • (3 • 2-2 • (-2))-1 • (6 • 2-2 • 3)+2 • (6 • (-2)-3 • 3) = -18

Пример №2. Вычислить объем тетраэдра с вершинами в точках A, B, C, D: A(14;4;5), B(–5;–3;2), C(–2;–6;–3), D(–2;2;–1).
Решение.
Координаты векторов находим по формуле:
X = xj - xi; Y = yj - yi; Z = zj - zi
AB(-19;-7;-3), AC(-16;-10;-8), AD(-16;-2;-6), BC(3;-3;-5), BD(3;5;-3), CD(0;8;2).

Определитель матрицы находим по формуле:
∆ = (-19) • ((-10) • (-6)-(-2) • (-8))-(-16) • ((-7) • (-6)-(-2) • (-3))+(-16) • ((-7) • (-8)-(-10) • (-3)) = -676

Перейти к онлайн решению своей задачи