Таблица значений функции Лапласа
Значение функции Лапласа в частности используют для нахождения доверительного интервала среднего значения выборки (см. пример).x | Ф(x) | x | Ф(x) | x | Ф(x) | x | Ф(x) |
0.00 | 0.0000 | 0.32 | 0.1255 | 0.64 | 0.2389 | 0.96 | 0.3315 |
0.01 | 0.0040 | 0.33 | 0.1293 | 0.65 | 0.2422 | 0.97 | 0.3340 |
0.02 | 0.0080 | 0.34 | 0.1331 | 0.66 | 0.2454 | 0.98 | 0.3365 |
0.03 | 0.0120 | 0.35 | 0.1368 | 0.67 | 0.2486 | 0.99 | 0.3389 |
0.04 | 0.0160 | 0.36 | 0.1406 | 0.68 | 0.2517 | 1.00 | 0.3413 |
0.05 | 0.0199 | 0.37 | 0.1443 | 0.69 | 0.2549 | 1.01 | 0.3438 |
0.06 | 0.0239 | 0.38 | 0.1480 | 0.70 | 0.2580 | 1.02 | 0.3461 |
0.07 | 0.0279 | 0.39 | 0.1517 | 0.71 | 0.2611 | 1.03 | 0.3485 |
0.08 | 0.0319 | 0.40 | 0.1554 | 0.72 | 0.2642 | 1.04 | 0.3508 |
0.09 | 0.0359 | 0.41 | 0.1591 | 0.73 | 0.2673 | 1.05 | 0.3531 |
0.10 | 0.0398 | 0.42 | 0.1628 | 0.74 | 0.2703 | 1.06 | 0.3554 |
0.11 | 0.0438 | 0.43 | 0.1664 | 0.75 | 0.2734 | 1.07 | 0.3577 |
0.12 | 0.0478 | 0.44 | 0.1700 | 0.76 | 0.2764 | 1.08 | 0.3599 |
0.13 | 0.0517 | 0.45 | 0.1736 | 0.77 | 0.2794 | 1.09 | 0.3621 |
0.14 | 0.0557 | 0.46 | 0.1772 | 0.78 | 0.2823 | 1.10 | 0.3643 |
0.15 | 0.0596 | 0.47 | 0.1808 | 0.79 | 0.2852 | 1.11 | 0.3665 |
0.16 | 0.0636 | 0.48 | 0.1844 | 0.80 | 0.2881 | 1.12 | 0.3686 |
0.17 | 0.0675 | 0.49 | 0.1879 | 0.81 | 0.2910 | 1.13 | 0.3708. |
0.18 | 0.0714 | 0.50 | 0.1915 | 0.82 | 0.2939 | 1.14 | 0.3729 |
0.19 | 0.0753 | 0.51 | 0.1950 | 0.83 | 0.2967 | 1.15 | 0.3749 |
0.20 | 0.0793 | 0.52 | 0.1985 | 0.84 | 0.2995 | 1.16 | 0.3770 |
0.21 | 0.0832 | 0.53 | 0.2019 | 0.85 | 0.3023 | 1.17 | 0.3790 |
0.22 | 0.0871 | 0.54 | 0.2054 | 0.86 | 0.3051 | 1.18 | 0.3810 |
0.23 | 0.0910 | 0.55 | 0.2088 | 0.87 | 0.3078 | 1.19 | 0.3830 |
0.24 | 0.0948 | 0.56 | 0.2123 | 0.88 | 0.3106 | 1.20 | 0.3849 |
0.25 | 0.0987 | 0.57 | 0.2157 | 0.89 | 0.3133 | 1.21 | 0.3869 |
0.26 | 0.1026 | 0.58 | 0.2190 | 0.90 | 0.3159 | 1.22 | 0/3883 |
0.27 | 0.1064 | 0.59 | 0.2224 | 0.91 | 0.3186 | 1.23 | 0.3907 |
0.28 | 0.1103 | 0.60 | 0.2257 | 0.92 | 0.3212 | 1.24 | 0.3925 |
0.29 | 0.1141 | 0.61 | 0.2291 | 0.93 | 0.3238 | 1.25 | 0.3944 |
0.30 | 0.1179 | 0.62 | 0.2324 | 0.94 | 0.3264 | ||
0.31 | 0.1217 | 0.63 | 0.2357 | 0.95 | 0.3289 |
x | Ф(x) | x | Ф(x) | x | Ф(x) | x | Ф(x) |
1.26 | 0.3962 | 1.59 | 0.4441 | 1.92 | 0.4726 | 2.50 | 0.4938 |
1.27 | 0.3980 | 1.60 | 0.4452 | 1.93 | 0.4732 | 2.52 | 0.4941 |
1.28 | 0.3997 | 1.61 | 0.4463 | 1.94 | 0.4738 | 2.54 | 0.4945 |
1.29 | 0.4015 | 1.62 | 0.4474 | 1.95 | 0.4744 | 2.56 | 0.4948 |
1.30 | 0.4032 | 1.63 | 0.4484 | 1.96 | 0.4750 | 2.58 | 0.4951 |
1.31 | 0.4049 | 1.64 | 0.4495 | 1.97 | 0.4756 | 2.60 | 0.4953 |
1.32 | 0.4066 | 1.65 | 0.4505 | 1.98 | 0.4761 | 2.62 | 0.4956 |
1.33 | 0.4082 | 1.66 | 0.4515 | 1.99 | 0.4767 | 2.64 | 0.4959 |
1.34 | 0.4099 | 1.67 | 0.4525 | 2.00 | 0.4772 | 2.66 | 0.4961 |
1.35 | 0.4115 | 1.68 | 0.4535 | 2.02 | 0.4783 | 2.68 | 0.4963 |
1.36 | 0.4131 | 1.69 | 0.4545 | 2.04 | 0.4793 | 2.70 | 0.4965 |
1.37 | 0.4147 | 1.70 | 0.4554 | 2.06 | 0.4803 | 2.72 | 0.4967 |
1.38 | 0.4162 | 1.71 | 0.4564 | 2.08 | 0.4812 | -2.74 | 0.4969 |
1.39 | 0.4177 | 1.72 | 0.4573 | 2.10 | 0.4821 | 2.76 | 0.4971 |
1.40 | 0.4192 | 1.73 | 0.4582 | 2.12 | 0.4830 | 2.78 | 0.4973 |
1.41 | 0.4207 | 1.74 | 0.4591 | 2.14 | 0.4838 | 2.80 | 0.4974 |
1.42 | 0.4222 | 1.75 | 0.4599 | 2.16 | 0.4846 | 2.82 | 0.4976 |
1.43 | 0.4236 | 1.76 | 0.4608 | 2.18 | 0.4854 | 2.84 | 0.4977 |
1.44 | 0.4251 | 1.77 | 0.4616 | 2.20 | 0.4861 | 2.86 | 0.4979 |
1.45 | 0.4265 | 1.78 | 0.4625 | 2.22 | 0.4868 | 2.88 | 0.4980 |
1.46 | 0.4279 | 1.79 | 0.4633 | 2.24 | 0.4875 | 2.90 | 0.4981 |
1.47 | 0.4292 | 1.80 | 0.4641 | 2.26 | 0.4881 | 2.92 | 0.4982 |
1.48 | 0.4306 | 1.81 | 0.4649 | 2.28 | 0.4887 | 2.94 | 0.4984 |
1.49 | 0.4319 | 1.82 | 0.4656 | 2.30 | 0.4893 | 2.96 | 0.4985 |
1.50 | 0.4332 | 1.83 | 0.4664 | 2.32 | 0.4898 | 2.98 | 0.4986 |
1.51 | 0.4345 | 1.84 | 0.4671 | 2.34 | 0.4904 | 3.00 | 0.49865 |
1.52 | 0.4357 | 1.85 | 0.4678 | 2.36 | 0.4909 | 3.20 | 0.49931 |
1.53 | 0.4370 | 1.86 | 0.4686 | 2.38 | 0.4913 | 3.40 | 0.49966 |
1.54 | 0.4382 | 1.87 | 0.4693 | 2.40 | 0.4918 | 3.60 | 0.49984 |
1.55 | 0.4394 | 1.88 | 0.4699 | 2.42 | 0.4922 | 3.80 | 0.49992 |
1.56 | 0.4406 | 1.89 | 0.4706 | 2.44 | 0.4927 | 4.00 | 0.49996 |
1.57 | 0.4418 | 1.90 | 0.4713 | 2.46 | 0.4931 | 4.50 | 0.49999 |
1.58 | 0.4429 | 1 1.91 | 0.4719 | 2.48 | 0.4934 | 5.00 | 0.49999 |
Критические точки распределения Χ2
Значения точек распределения Χ2 используют, например, для проверки гипотезы о нормальном распределении.Для любого значения уровня значимости α, Χ2 можно найти с помощью функции MS Excel: =ХИ2ОБР(α;степеней свободы) (см. подробнее).
Число степеней свободы
k
| Уровень значимости α
| |||||
0,01
| 0,025
| 0.05
| 0,95
| 0,975
| 0.99
| |
1
| 6.6
| 5.0
| 3.8
| 0.0039
| 0.00098
| 0.00016
|
2
| 9.2
| 7.4
| 6.0
| 0.103
| 0.051
| 0.020
|
3
| 11.3
| 9.4
| 7.8
| 0.352
| 0.216
| 0.115
|
4
| 13.3
| 11.1
| 9.5
| 0.711
| 0.484
| 0.297
|
5
| 15.1
| 12.8
| 11.1
| 1.15
| 0.831
| 0.554
|
6
| 16.8
| 14.4
| 12.6
| 1.64
| 1.24
| 0.872
|
7
| 18.5
| 16.0
| 14.1
| 2.17
| 1.69
| 1.24
|
8
| 20.1
| 17.5
| 15.5
| 2.73
| 2.18
| 1.65
|
9
| 21.7
| 19.0
| 16.9
| 3.33
| 2.70
| 2.09
|
10
| 23.2
| 20.5
| 18.3
| 3.94
| 3.25
| 2.56
|
11
| 24.7
| 21.9
| 19.7
| 4.57
| 3.82
| 3.05
|
12
| 26.2
| 23.3
| 21 .0
| 5.23
| 4.40
| 3.57
|
13
| 27.7
| 24.7
| 22.4
| 5.89
| 5.01
| 4.11
|
14
| 29.1
| 26.1
| 23.7
| 6.57
| 5.63
| 4.66
|
15
| 30.6
| 27.5
| 25.0
| 7.26
| 6.26
| 5.23
|
16
| 32.0
| 28.8
| 26.3
| 7.96
| 6.91
| 5.81
|
17
| 33.4
| 30.2
| 27.6
| 8.67
| 7.56
| 6.41
|
18
| 34.8
| 31.5
| 28.9
| 9.39
| 8.23
| 7.01
|
19
| 36.2
| 32.9
| 30.1
| 10.1
| 8.91
| 7.63
|
20
| 37.6
| 34.2
| 31.4
| 10.9
| 9.59
| 8.26
|
21
| 38.9
| 35.5
| 32.7
| 11.6
| 10.3
| 8.90
|
22
| 40.3
| 36.8
| 33.9
| 12.3
| 11.0
| 9.54
|
23
| 41.6
| 38.1
| 35.2
| 13.1
| 11.7
| 10.2
|
24
| 43.0
| 39.4
| 36.4
| 13.8
| 12.4
| 10.9
|
25
| 44.3
| 40.6
| 37.7
| 14.6
| 13.1
| 11.5
|
26
| 45.6
| 41.9
| 38.9
| 15.4
| 13.8
| 12.2
|
27
| 47.0
| 43.2
| 40.1
| 16.2
| 14.6
| 12.9
|
28
| 48.3
| 44.5
| 41.3
| 16.9
| 15.3
| 13.6
|
29
| 49.6
| 45.7
| 42.6
| 17.7
| 16.0
| 14.3
|
30
| 50.9
| 47.0
| 43.8
| 18.5
| 16.8
| 15.0
|
Критические точки распределения Стьюдента
Для любого значения уровня значимости α Tкр можно найти с помощью функции MS Excel: =СТЬЮДРАСПОБР(α;степеней свободы)Число степеней свободы
k | Уровень значимости α (двусторонняя критическая область) | |||||
0.10 |
0.05 |
0.02 |
0.01 |
0.002 |
0.001 | |
1 | 6.31 | 12.7 | 31.82 | 63.7 | 318.3 | 637.0 |
2 | 2.92 | 4.30 | 6.97 | 9.92 | 22.33 | 31.6 |
3 | 2.35 | 3.18 | 4.54 | 5.84 | 10.22 | 12.9 |
4 | 2.13 | 2.78 | 3.75 | 4.60 | 7.17 | 8.61 |
5 | 2.01 | 2.57 | 3.37 | 4.03 | 5.89 | 6.86 |
6 | 1.94 | 2.45 | 3.14 | 3.71 | 5.21 | 5.96 |
7 | 1.89 | 2.36 | 3.00 | 3.50 | 4.79 | 5.40 |
8 | 1.86 | 2.31 | 2.90 | 3.36 | 4.50 | 5.04 |
9 | 1.83 | 2.26 | 2.82 | 3.25 | 4.30 | 4.78 |
10 | 1.81 | 2.23 | 2.76 | 3.17 | 4.14 | 4.59 |
11 | 1.80 | 2.20 | 2.72 | 3.11 | 4.03 | 4.44 |
12 | 1.78 | 2.18 | 2.68 | 3.05 | 3.93 | 4.32 |
13 | 1.77 | 2.16 | 2.65 | 3.01 | 3.85 | 4.22 |
14 | 1.76 | 2.14 | 2.62 | 2.98 | 3.79 | 4.14 |
15 | 1.75 | 2.13 | 2.60 | 2.95 | 3.73 | 4.07 |
16 | 1.75 | 2.12 | 2.58 | 2.92 | 3.69 | 4.01 |
17 | 1.74 | 2.11 | 2.57 | 2.90 | 3.65 | 3.95 |
18 | 1.73 | 2.10 | 2.55 | 2.88 | 3.61 | 3.92 |
19 | 1.73 | 2.09 | 2.54 | 2.86 | 3.58 | 3.88 |
20 | 1.73 | 2.09 | 2.53 | 2.85 | 3.55 | 3.85 |
21 | 1.72 | 2.08 | 2.52 | 2.83 | 3.53 | 3.82 |
22 | 1.72 | 2.07 | 2.51 | 2.82 | 3.51 | 3.79 |
23 | 1.71 | 2.07 | 2.50 | 2.81 | 3.59 | 3.77 |
24 | 1.71 | 2.06 | 2.49 | 2.80 | 3.47 | 3.74 |
25 | 1.71 | 2.06 | 2.49 | 2.79 | 3.45 | 3.72 |
26 | 1.71 | 2.06 | 2.48 | 2.78 | 3.44 | 3.71 |
27 | 1.71 | 2.05 | 2.47 | 2.77 | 3.42 | 3.69 |
28 | 1.70 | 2.05 | 2.46 | 2.76 | 3.40 | 3.66 |
29 | 1.70 | 2.05 | 2.46 | 2.76 | 3.40 | 3.66 |
30 | 1.70 | 2.04 | 2.46 | 2.75 | 3.39 | 3.65 |
40 | 1.68 | 2.02 | 2.42 | 2.70 | 3.31 | 3.55 |
60 | 1.67 | 2.00 | 2.39 | 2.66 | 3.23 | 3.46 |
120 | 1.66 | 1.98 | 2.36 | 2.62 | 3.17 | 3.37 |
¥ | 1.64 | 1.96 | 2.33 | 2.58 | 3.09 | 3.29 |
| 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 |
| Уровень значимости α
(односторонняя критическая область) |
Критические точки распределения Фишера
Значения таблицы распределения Фишера в частности используют для определения статистической значимости коэффициента детерминации (уравнения регресии). (k1— число степеней свободы большей дисперсии,k2—число степеней свободы меньшей дисперсии)
Уровень значимости α =0.01
k1
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
k2 | ||||||||||||
1 | 4052 | 4999 | 5403 | 5625 | 5764 | 5889 | 5928 | 5981 | 6022 | 6056 | 6082 | 6106 |
2 | 98.49 | 99.01 | 90.17 | 99.25
| 99.33
| 99.30
| 99.34
| 99.36
| 99.36
| 99.40
| 99.41
| 99.42 |
3 | 34.12 | 30.81 | 29.46 | 28.71
| 28.24
| 27.91
| 27.67
| 27.49
| 27.34
| 27.23
| 27.13
| 27.05 |
4 | 21.20 | 18.00 | 16.69 | 15.98
| 15.52
| 15.21
| 14.98
| 14.80
| 14.66
| 14.54
| 14.45
| 14.37 |
5 | 16.26 | 13.27 | 12.06 | 11.39
| 10.97
| 10.67
| 10.45
| 10.27
| 10.15
| 10.05
| 9.96
| 9.89 |
6 | 13.74 | 10.92 | 9.78 | 9.15
| 8.75
| 8.47
| 8.26
| 8.10
| 7.98
| 7.87
| 7.79
| 7.72 |
7 | 12.25 | 9.55 | 8.45 | 7.85
| 7.46
| 7.19
| 7.00
| 6.84
| 6.71
| 6.62
| 6.54
| 6.47 |
8 | 11.26 | 8.65 | 7.59 | 7.01
| 6.63
| 6.37
| 6.19
| 6.03
| 5.91
| 5.82
| 5.74
| 5.67 |
9 | 10.56 | 8.02 | 6.99 | 6.42 | 6.06 | 5.80 | 5.62 | 5.47 | 5.35 | 5.26 | 5.18 | 5.11 |
10 | 10.04 | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.21 | 5.06 | 4.95 | 4.85 | 4.78 | 4.71 |
11 | 9.86 | 7.20 | 6.22 | 5.67 | 5.32 | 5.07 | 4.88 | 4.74 | 4.63 | 4.54 | 4.46 | 4.40 |
12 | 9.33 | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.65 | 4.50 | 4.39 | 4.30 | 4.22 | 4.16 |
13 | 9.07 | 6.70 | 5.74 | 5.20 | 4.86 | 4.62 | 4.44 | 4.30 | 4.19 | 4.10 | 4.02 | 3.96 |
14 | 8.86 | 6.51 | 5.56 | 5.03 | 4.69 | 4.46 | 4.28 | 4.14 | 4.03 | 3.94 | 3.86 | 3.80 |
15 | 8.68 | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.89 | 3.80 | 3.73 | 3.67 |
16 | 8.53 | 6.23 | 5.29 | 4.77 | 4.44 | 4.20 | 4.03 | 3.89 | 3.78 | 3.69 | 3.61 | 3.55 |
17 | 8.40 | 6.11 | 5.18 | 4.67 | 4.34 | 4.10 | 3.93 | 3.79 | 3.68 | 3.59 | 3.52 | 3.45 |
Уровень значимости α =0.05
k1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
k2
| ||||||||||||
1 | 161 | 200 | 216 | 225 | 230 | 234 | 237 | 239 | 241 | 242 | 243 | 244 |
2 | 18.5 | 19.00 | 19.16 | 19.25 | 19:30 | 19.33 | 19.36 | 19.37 | 19.38 | 19.39 | 19.40 | 19.41 |
3 | 10.13 | 9.55 | 9.28 | 9.12 | 9.01 | 8.94 | 8.88 | 8.84 | 8.81 | 8.78 | 8.76 | 8.74 |
4 | 7.71 | 6.94 | 6.59 | 6.39 | 6.26 | 6.16 | 6.09 | 6.04 | 6.00 | 5.96 | 5.93 | 5.91 |
5 | 6.61 | 5.79 | 5.41 | 5.19 | 5.05 | 4.95 | 4.88 | 4.82 | 4.78 | 4.74 | 4.70 | 4.68 |
6 | 5.99 | 5.14 | 4.76 | 4.53 | 4.39 | 4.28 | 4.21 | 4.15 | 4.10 | 4.06 | 4.03 | 4.00 |
7 | 5.59 | 4.74 | 4.35 | 4.12 | 3.97 | 3.87 | 3.79 | 3.73 | 3.68 | 3.63 | 3.60 | 3.57 |
8 | 5.32 | 4.46 | 4.07 | 3.84 | 3.69 | 3.58 | 3.50 | 3.44 | 3.39 | 3.34 | 3.31 | 3.28 |
9 | 5.12 | 4.26 | 3.86 | 3.63 | 3.48 | 3.37 | 3.29 | 3.23 | 3.18 | 3.13 | 3.10 | 3.07 |
10 | 4.96 | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.97 | 2.94 | 2.91 |
11 | 4.84 | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.86 | 2.82 | 2.79 |
12 | 4.75 | 3.88 | 3.49 | 3.26 | 3.11 | 3.00 | 2.92 | 2.85 | 2.80 | 2.76 | 2.72 | 2.69 |
13 | 4.67 | 3.80 | 3.41 | 3.18 | 3.02 | 2.92 | 2.84 | 2.77 | 2.72 | 2.67 | 2.63 | 2.60 |
14 | 4.60 | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.77 | 2.70 | 2.65 | 2.60 | 2.56 | 2.53 |
15 | 4.54 | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.70 | 2.64 | 2.59 | 2.55 | 2.51 | 2.48 |
16 | 4.49 | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 | 2.45 | 2.42 |
17 | 4.45 | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.62 | 2.55 | 2.50 | 2.45 | 2.41 | 2.38 |