Уравнение регрессии
Уравнение парной регрессии
Решить онлайн
Примеры решений Множественная регрессия Линейная регрессия Нелинейная регрессия Коэффициент Кендалла Показатели ряда динамики Тест Дарбина-Уотсона Ошибка аппроксимации Экспоненциальное сглаживание

Сглаживание экспоненциальным методом

Сервис позволит провести сглаживание временного ряда yt экспоненциальным методом, т.е. простроить модель Брауна (см. пример).
Инструкция. Укажите количество данных (количество строк), нажмите Далее. Полученное решение сохраняется в файле Word.
Количество строк (исходных данных)

Особенность метода экспоненциального сглаживания заключается в том, что в процедуре нахождения сглаженного уровня используются значения только предшествующих уровней ряда, взятые с определенным весом, причем вес уменьшается по мере удаления его от момента времени, для которого определяется сглаженное значение уровня ряда. Если для исходного временного ряда y1, y2, y3,…, yn соответствующие сглаженные значения уровней обозначить через St, t = 1,2,...,n, то экспоненциальное сглаживание осуществляется по формуле:
St = (1-α)yt + αSt-1
В некоторых источниках приводится другая формула:
St = αyt + (1-α)St-1
где α - параметр сглаживания (0 < α < 1); величина (1-α) называется коэффициентом дисконтировании.
В практических задачах обработки экономических временных рядов рекомендуется (необоснованно) выбирать величину параметра сглаживания в интервале от 0.1 до 0.3. Других точных рекомендаций для выбора оптимальной величины параметра α пока нет. В отдельных случаях предлагается определять величину α исходя их длины сглаживаемого ряда: α = 2/(n+1).
Что касается начального параметра S0, то в задачах его берут или равным значению первого уровня ряда у1, или равным средней арифметической нескольких первых членов ряда. Если при подходе к правому концу временного ряда сглаженные этим методом значения при выбранном параметре α начинают значительно отличаться от соответствующих значений исходного ряда, необходимо перейти на другой параметр сглаживания. Достоинством этого метода является то, что при сглаживании не теряются ни начальные, ни конечные уровни сглаживаемого временного ряда.

Сглаживание экспоненциальным методом в Excel

Для вычисления каждого прогноза MS Excel использует отдельную, но алгебраически эквивалентную формулу. Оба компонента – данные предыдущего наблюдения и предыдущий прогноз – каждого прогноза умножаются на коэффициент, отображающий вклад данного компонента в текущий прогноз.
Активизировать средство Экспоненциальное сглаживание можно, выбрав команду Сервис/Анализ данных после загрузки надстройки Пакет анализа (подробнее).

Пример. Проверить ряд на наличие выбросов методом Ирвина, сгладить методом экспоненциального сглаживания (α = 0.1).
В качестве S0 берем среднее арифметическое первых 3 значения ряда.
S0 = (50 + 56 + 46)/3 = 50.67

t y St Формула
1 50 50.07 (1 - 0.1)*50 + 0.1*50.67
2 56 55.41 (1 - 0.1)*56 + 0.1*50.07
3 46 46.94 (1 - 0.1)*46 + 0.1*55.41
4 48 47.89 (1 - 0.1)*48 + 0.1*46.94
5 49 48.89 (1 - 0.1)*49 + 0.1*47.89
6 46 46.29 (1 - 0.1)*46 + 0.1*48.89
7 48 47.83 (1 - 0.1)*48 + 0.1*46.29
8 47 47.08 (1 - 0.1)*47 + 0.1*47.83
9 47 47.01 (1 - 0.1)*47 + 0.1*47.08
10 49 48.8 (1 - 0.1)*49 + 0.1*47.01
Статистика
Группировка данных. Формирование вариационного ряда, дискретного и интервального.
Xf ГруппыКоличество
23 5-105
36 10-158
47 15-2014
54 ......
Вычисление дисперсии, коэффициента вариации и других показателей
Решение онлайн
Свойства точечной оценки
Точечная оценка и ее свойства: несмещенность, состоятельность, эффективность
Подробнее
Нелинейная регрессия
Нелинейная регрессия: парабола, гипербола, экспонента, степенная, логарифмическая
Нелинейная регрессия
Решить онлайн
Курсовые на заказ