Определитель матрицы
Найти определитель матрицы
Решить онлайн
Примеры решений Ранг матрицы Метод Крамера Умножение матриц Определитель матрицы Метод обратной матрицы Обратная матрица Метод Гаусса онлайн LU разложение матрицы Производная онлайн

Как найти общее и частное решение системы линейных уравнений

Пример 1. Найти общее решение и какое–нибудь частное решение системы
Решение выполняем с помощью калькулятора. Выпишем расширенную и основную матрицы:

Пунктиром отделена основная матрица A. Сверху пишем неизвестные системы, имея в виду возможную перестановку слагаемых в уравнениях системы. Определяя ранг расширенной матрицы, одновременно найдем ранг и основной. В матрице B первый и второй столбцы пропорциональны. Из двух пропорциональных столбцов в базисный минор может попасть только один, поэтому перенесем, например, первый столбец за пунктирную черту с обратным знаком. Для системы это означает перенос членов с x1 в правую часть уравнений.

Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы. Работаем с первой строкой: умножим первую строку матрицы на (-3) и прибавим ко второй и третьей строкам по очереди. Затем первую строку умножим на (-2) и прибавим к четвертой.

Вторая и третья строки пропорциональны, следовательно, одну из них, например вторую, можно вычеркнуть. Это равносильно вычеркиванию второго уравнения системы, так как оно является следствием третьего.

Теперь работаем со второй строкой: умножим ее на (-1) и прибавим к третьей.

Минор, обведенный пунктиром, имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на главной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rangA = rangB = 3.
Минор является базисным. В него вошли коэффициенты при неизвестных x2, x3, x4, значит, неизвестные x2, x3, x4 – зависимые, а x1, x5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор (что соответствует пункту 4 приведенного выше алгоритма решения).

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид
Методом исключения неизвестных находим:
x4=3-4x5, x3=3-4x5-2x4=3-4x5-6+8x5=-3+4x5
x2=x3+2x4-2+2x1+3x5 = -3+4x5+6-8x5-2+2x1+3x5 = 1+2x1-x5
Получили соотношения, выражающие зависимые переменные x2, x3, x4 через свободные x1 и x5, то есть нашли общее решение:

Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Найдем два частных решения:
1) пусть x1 = x5 = 0, тогда x2 = 1, x3 = -3, x4 = 3;
2) положим x1 = 1, x5 = -1, тогда x2 = 4, x3 = -7, x4 = 7.
Таким образом, нашли два решения: (0,1,-3,3,0) – одно решение, (1,4,-7,7,-1) – другое решение.

Пример 2. Исследовать совместность, найти общее и одно частное решение системы

Решение. Переставим первое и второе уравнения, чтобы иметь единицу в первом уравнении и запишем матрицу B.

Получим нули в четвертом столбце, оперируя первой строкой:

Теперь получим нули в третьем столбце с помощью второй строки:

Третья и четвертая строки пропорциональны, поэтому одну из них можно вычеркнуть, не меняя ранга:
Третью строку умножим на (–2) и прибавим к четвертой:

Видим, что ранги основной и расширенной матриц равны 4, причем ранг совпадает с числом неизвестных, следовательно, система имеет единственное решение:
-x1=-3 → x1=3; x2=3-x1 → x2=0; x3=1-2x1 → x3=5.
x4 = 10- 3x1 – 3x2 – 2x3 = 11.

Пример 3. Исследовать систему на совместность и найти решение, если оно существует.

Решение. Составляем расширенную матрицу системы.

Переставляем первые два уравнения, чтобы в левом верхнем углу была 1:
Умножая первую строку на (-1), складываем ее с третьей:

Умножим вторую строку на (-2) и прибавим к третьей:

Система несовместна, так как в основной матрице получили строку, состоящую из нулей, которая вычеркивается при нахождении ранга, а в расширенной матрице последняя строка останется, то есть rB > rA.

Задание. Исследовать данную систему уравнений на совместность и решить ее средствами матричного исчисления.
Решение

Пример. Доказать совместимость системы линейных уравнений и решить ее двумя способами: 1) методом Гаусса; 2) методом Крамера. (ответ ввести в виде: x1,x2,x3)
Решение:doc:doc:xls
Ответ: 2,-1,3.

Пример. Дана система линейных уравнений. Доказать ее совместность. Найти общее решение системы и одно частное решение.
Решение
Ответ:x3 = - 1 + x4 + x5; x2 = 1 - x4; x1 = 2 + x4 - 3x5

Задание. Найти общее и частное решения каждой системы.
Решение. Исследуем эту систему по теореме Кронекера-Капелли.
Выпишем расширенную и основную матрицы:

1114020
342301
23-33-21
x1x2x3x4x5

Здесь матрица А выделена жирным шрифтом.
Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0-140-36-1
342301
23-33-21

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-3). Добавим 3-ую строку к 2-ой:
0-140-36-1
0-113-36-1
23-33-21

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
0027000
0-113-36-1
23-33-21

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), причем этот минор принадлежит как основной матрице, так и расширенной, следовательно rang(A) = rang(B) = 3. Поскольку ранг основной матрицы равен рангу расширенной, то система является совместной.
Этот минор является базисным. В него вошли коэффициенты при неизвестных x1,x2,x3, значит, неизвестные x1,x2,x3 – зависимые (базисные), а x4,x5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.
0027000
0-113-13-6
23-31-32
x1x2x3x4x5
Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
27x3 =
- x2 + 13x3 = - 1 + 3x4 - 6x5
2x1 + 3x2 - 3x3 = 1 - 3x4 + 2x5
Методом исключения неизвестных находим:
Получили соотношения, выражающие зависимые переменные x1,x2,x3 через свободные x4,x5, то есть нашли общее решение:
x3 = 0
x2 = 1 - 3x4 + 6x5
x1 = - 1 + 3x4 - 8x5
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной, т.к. имеет более одного решения.

Задание. Решить систему уравнений.
Ответ:x2 = 2 - 1.67x3 + 0.67x4
x1 = 5 - 3.67x3 + 0.67x4
Придавая свободным неизвестным любые значения, получим сколько угодно частных решений. Система является неопределенной

Пример. Проверить совместность линейной системы уравнений и в случае совместности решить ее: а) по формулам Крамера; б) методом Гаусса.
Решение: Проверяем совместность системы с помощью теоремы Кронекера - Капелли. Согласно теореме Кронекера - Капелли, из того, что следует несовместность исходной системы.
Ответ: система не совместна.
Решение

Пример 3, Пример 4, Пример 5, Пример 6, Решение

Налоговый вычет на обучение
√ 120 тыс. руб. - максимальная сумма расходов на обучение
√ вычет от государства
√ вычет от работодателя
Подробнее
Требуются авторы студенческих работ!
  • регулярный поток заказов;
  • стабильный доход
Подробнее
Учебно-методический
  • курсы переподготовки и повышения квалификации;
  • вебинары;
  • сертификаты на публикацию методического пособия
Подробнее
Курсовые на заказ